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River pollution abatement: Decentralized solutions and smart contracts?

Jens Gudmundsson

Department of Food and Resource Economics, University of Copenhagen, Denmark

Jens Leth Hougaard

Department of Food and Resource Economics, University of Copenhagen, Denmark

Abstract

In river systems, costly upstream pollution abatement creates downstream welfare gains. Absent

adequate agreement on how to share the gains, upstream regions lack incentives to reduce pol-

lution levels. We develop a model that makes explicit the impact of water quality on production

benefits and suggest a solution for sharing the gains of optimal pollution abatement, namely the

Shapley value of an underlying convex cooperative game. We provide a decentralized implementa-

tion through a smart contract to automate negotiations. It ensures a socially optimal agreement

supported by fair compensations to regions that turn to cleaner production from those that pollute.

Keywords: River pollution, decentralized mechanism, Shapley value, water quality, smart contract

JEL: C7, D47, D62, Q52, Q25

1. Introduction

Water pollution is a global concern, driven in part by economic development as growing popu-

lation, agriculture, and industry contribute to wastewater production (UN-Water, 2016). At least 2

billion people rely on polluted drinking sources (WHO, 2019), making waterborne diseases a lead-

ing cause of mortality in developing countries (Garg et al., 2018). Difficult trade-offs are in play:

for instance, pesticide use may be a necessity for food security, but its effect on water quality is

harmful to human, animal, and plant life (see e.g Lai, 2017; FAO, 2018). We focus on the nega-

tive externalities that upstream pollution causes on downstream river regions. Pollution abatement

comes at a cost to one region but benefits many, leading to an intricate problem in which the

latter regions may be willing to, but cannot agree on how to, compensate the former (say by sup-

porting investments in environmentally-friendly production facilities). The effectiveness of relying

on a central authority to settle this has been questioned (see e.g. Sigman, 2005; Cai et al., 2016),
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and oftentimes there simply is no such authority (e.g. for transboundary rivers). Therefore, as in

the work of Orstrom and co-authors (see e.g. Orstrom, 1990), we focus on a decentralized solution

in which the affected regions negotiate without external involvement. This ensures that regional

decision rights are respected and that the resulting unanimously agreed-upon solution is stable. In

equilibrium, our solution implements fair compensations to the regions that reduce their pollution.

While there are many ways to assess water quality in practice, they generally have in common

that they measure pollutant concentration (say the amount of pollutants per liter of water).1 Exist-

ing game-theoretical models on water extraction are explicit on water inflows at various locations

of the river (see e.g. Ambec and Sprumont, 2002), but this aspect has been left out in models of

river pollution; in effect, these models typically focus on the pollutant quantity rather than its

concentration and disregard changes in water quality along the river (Section 2 expands on this).

However, these are essential factors in determining optimal abatement as well as in assessing each

region’s claim on the joint welfare gain from cooperation. For instance, a large downstream inflow,

say due to two rivers merging, reduces the importance of upstream abatement. In this work, we

develop a novel model that captures water inflows and adjusts production benefits by water quality.

In the model, the most upstream region has an inflow of clean water that it can use for pro-

duction. Some of the used water naturally dissipates while the rest becomes polluted. The region

can choose more environmentally-friendly production to reduce the generated pollution, but this is

costly and only benefits the downstream regions. As a baseline, we assume a constant marginal cost

of pollution abatement, but hint also on how this can be generalized considerably. The polluted

water from production mixes with the clean unused water before entering the next region. In this,

the second-most upstream region, there is again an inflow of clean water. Hence, the total water flow

typically varies along the river based on dissipation and inflows. Likewise, water quality, defined

as the fraction of the available water that is clean, fluctuates based on the abatement decisions.

Absent any abatement agreements, we expect that regions do not take the negative externality of

their pollution into account. However, welfare improvements can arise if they do: upstream pollu-

tion abatement leads to downstream welfare gains. We seek to maximize social welfare as given by

the total benefit of the river system net the total abatement costs.

Our first result, Proposition 1, gives a precise expression for the water quality in each region

as a function of the abatement decisions. Specifically, we find that region i’s abatement affects

region k’s water quality linearly, albeit in a discounted form based on the production carried out by

all intermediate regions j. With resemblance to classic “bang-bang” control (see e.g. Conrad and

Clark, 1987), this makes it simple to identify the socially optimal abatement plan. Namely, a region

should abate fully (that is, improve downstream water quality as much as possible) if the total

1
See, for instance, the criteria established by the US Environmental Protection Agency (https://www.epa.gov/

wqc) and the standards set by the EU (http://data.europa.eu/eli/dir/2008/105/oj). A very concrete example is
found in Yang et al. (2021).
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marginal benefits to the other regions exceed the marginal cost; otherwise, the region is better off

fully abstaining from abatement (Theorem 1). Thereafter, we turn to the question of how to share

the welfare gain from optimal abatament between the regions. To identify a fair distribution, we

introduce the abatement game, a cooperative game in which the worth of a coalition is given by the

largest welfare gain attainable by the coalition without support from the other regions. This game

turns out to have a particular structure; specifically, it is a so-called activity optimization game with

complementarity (Topkis, 1987, 2011). This implies that the game is convex (Theorem 2), and that

the Shapley value (Shapley, 1953) of the game provides a particularly appealing way of sharing the

gains between the regions (see e.g. Moulin, 1988). This solution could in principle be implemented

by a central agency with complete information and control, but we opt instead for a decentralized

approach. That is to say, we seek a way for the regions to interact without external involvement

for which equilibrium behavior results in payoffs coinciding with the Shapley value.

Specifically, we adapt the bidding mechanism of Pérez-Castrillo and Wettstein (2001) when

sharing the welfare gain from optimal abatement. The key idea of this mechanism is for one region

to propose a solution for the others to accept or reject; in addition, there is a first stage in which

each region bids to become the proposer. The (subgame-perfect Nash) equilibrium payoffs of this

non-cooperative game coincide with the Shapley value of the abatement game (Theorem 3). Note

that the purpose of the mechanism is only to share the welfare gains. Hence, we imagine a situation

in which the regions first agree on the stakes involved in terms of individual welfare changes. The

bidding mechanism is then used to share the common gain. This differentiates our solution from

related mechanisms such as those in Gudmundsson et al. (2019), where the division of the common

welfare gain is preceded and affected by a stage in which the stakes are determined strategically.

While the mechanisms of Gudmundsson et al. (2019) are developed for the river sharing model,

they can be adapted to the present pollution abatement context as well (see Section 9). There are

pros and cons with the two approaches: while Gudmundsson et al.’s (2019) mechanisms address

the problem as a whole, this comes with significant restrictions on how the welfare gains can be

shared. In contrast, the current approach offers more flexibility in sharing the gains and has the

further advantage of being inherently finite.

We concretely show that the mechanism is well suited for practical use by providing a proto-

type for this purpose. The design uses cryptography, smart contracts, and blockchain technology.

Together, these provide an ideal environment for decentralized solutions, eliminating the need for

trusted third parties and reducing transaction costs. We argue both in general terms for its useful-

ness in economic design as well as specifically for the application of pollution abatement. Compared

to having a central agency impose the solution, it lets the affected regions reach agreement without

external actors interfering, saving time and money. Moreover, it resolves issues of trust and veri-

fication: with a central agency, the individual regions face the uncertainty of whether the agency

acts as intended. In contrast, the smart contract is publicly available, the “rules of the game” are

3



fixed from the outset, and transactions are executed automatically with minimal delay.

Lastly, we conduct a simulation study to investigate how the Shapley value distributes the

welfare gain from socially optimal abatement. That is to say, what regional characteristics typically

yield high payoffs? We find that the regions that reap the largest share of the welfare gain are

typically located close to the “middle” of the river, as these are in ideal position to both benefit from

upstream abatement as well as contribute to downstream gains by abating themselves. Moreover,

it is favorable to have high-valued production, to optimally abate fully, and to be situated in such

a way that the abatement efforts trickle far downstream.

The paper is outlined as follows. In Section 2, we review the existing literature. In Section 3,

we introduce the model. In Section 4, we examine the problem of maximizing social welfare. In

Section 5, we define and analyze the cooperative game. In Section 6, we describe the bidding

mechanism and how to implement it in practice. In Section 7, we examine an extensive numerical

example. In Section 8, we conduct the simulation study. We conclude in Section 9. Proofs and

technical details are postponed to the Appendix.

2. Related literature

Our paper relates to several strands of literature, but most obviously to the literature on game-

theoretic analysis of river sharing problems initiated by the seminal paper of Ambec and Sprumont

(2002). This has been followed by a stream of papers including, for instance, Ambec and Ehlers

(2008), Ambec et al. (2013), Ansink and Weikard (2009, 2012), van den Brink et al. (2012), Gud-

mundsson et al. (2019), and Öztürk (2020). In its original form, the river sharing model concerns

welfare-maximizing water extraction along a river shared by multiple regions implemented via as-

sociated side payments (see e.g. Beal et al., 2013, for a survey).

A notable branch of this literature focuses on the costs rather than the benefits of water ex-

traction. Ni and Wang (2007) address the problem of sharing pollution costs along a river. In their

work, a central agency determines the abatement cost of each region and two methods for allocating

the total abatement costs are analyzed. The first method, Local Responsibility Sharing, establishes

that each region carries its own direct abatement cost. The second method, Upstream Equal Shar-

ing, asserts that regions should share equally the abatement cost for each segment comprised of

the region itself and all regions situated upstream from it. Although the model of Ni and Wang

(2007) constitutes an interesting first step towards an understanding of cost-sharing issues under

upstream-downstream externalities, their model is arguably too stylized to capture important as-

pects of transboundary pollution. Several papers have aimed to address some of the shortcomings.

For instance, Alcalde-Unzu et al. (2015) argue that the model of Ni and Wang (2007) does not

account for how pollution is transferred downstream: Local Responsibility Sharing simply ignores

such transfers, while Upstream Equal Sharing implicitly assumes equal responsibilities for the pol-

lution at a given region between the region itself and all the upstream regions, which is unlikely to
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be the case in practice. Consequently, Alcalde-Unzu et al. (2015, 2021) explicitly introduce the fact

that pollution is transferred from upstream to downstream regions at a particular rate. This rate

is assumed to be unknown, which creates uncertainties around regional responsibilities represented

by responsibility ranges. Alternative cost sharing rules can be found, for instance, in Dong et al.

(2012), van den Brink et al. (2018), and Sun et al. (2019). These papers typically take an axiomatic

approach to fair allocation.

A more radical change of the model is found in Gengenbach et al. (2010), who consider ex-

ogeneous pollution levels and model agents’ optimal choice of abatement under a linear damage

function and a strictly convex cost function. For every region i, net benefits from abatement there-

fore equal i’s benefit from aggregate abatement by all upstream regions (including i) less the cost of

i’s own abatement. Equilibrium abatement is then analyzed under various coalition structures. In a

somewhat related framework, Steinmann and Winkler (2019) consider optimal abatement choices

under strictly increasing and strictly convex costs, but focus on the allocation of welfare gains from

full cooperation, providing a new justification for the original “downstream incremental” solution

of Ambec and Sprumont (2002). Lastly, van der Laan and Moes (2016) consider a model set-up

with optimal pollution choice and payoff functions where region i’s benefit only depends on i’s

own pollution whereas i’s costs depend on the pollution levels of i and all upstream regions. They

analyze allocation of welfare gains from collaboration among all regions.

In comparison, our model also considers optimal choice of abatement level but under linear

costs. We further add the aspect of pollution transfers downstream and its effects on water quality

(and thereby benefit from water use), taking into account both dissipation from production as

well as potential inflows of clean water in each region. In particular, this is in line with an aspect

pointed out by Hou et al. (2019), who argue that the river itself may reduce the pollution as it flows

downstream. They model this through a wastewater treatment rate. As in many of the previous

papers, we focus on allocation of the welfare gains obtained from full cooperation, but point at how

a natural solution (here, the Shapley value) can be implemented by a decentralized mechanism.

3. Preliminaries

We consider a stylized model of a river, studying both the benefits of water extraction and the

ensuing drawbacks as water usage pollutes the water, diminishing its usefulness to downstream

regions. Costly abatement efforts can, and optimally should, be taken to restore water quality.

However, a region has no incentive to abate unless it gets compensated for doing so by the benefiting

downstream regions.

3.1. Model

The river flows through regions N = {1, 2, . . . , n}, where 1 is most upstream. The regions are

economic agents who can represent anything from small local farmers to entire countries. Each
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region i has an inflow of ei ≥ 0 units of clean water, say due to precipitation. It also has access

to a production facility that it can divert water to. We take each region i’s amount yi ≥ 0 of

water diverted for production as exogenous. While this allows us to focus exclusively on pollution

abatement, we discuss a weakening of this assumption in Section 9. Once used in production, some

of the water dissipates. This naturally depends on the type of production: presumably more water

dissipates if used to irrigate fields than if used to operate a hydro power plant. For simplicity,

we assume a constant and common dissipation rate δ ∈ [0, 1]: with yi units of water used for

production, δyi units disappear from the river system and the remaining (1−δ)yi units get polluted.

Thus, the total amount of water available to region j is tj ≡ ej +
∑

i<j(ei − δyi).
The benefits accrued from production depend on the water quality. Each “unit of water” is

either clean or polluted, and the quality qi ∈ [0, 1] of the water at i’s disposal is the fraction

that is clean. Hence, q1 = 1, but q2, . . . , qn may be smaller. While there are many forms of water

pollution in practice, we have in mind here pollution that is perfectly dissolved and mixed with the

clean water. It is important to maintain a high water quality as production creates quality-adjusted

benefit qibi to region i.2 Hence, bi ≥ 0 is the benefit from using clean water (qi = 1), while fully

polluted water (qi = 0) is useless. Again, in practice there are many sources for this benefit and

the dependence on high-quality water likely varies considerably: for pure consumptive use, water

quality is essential to prevent illnesses; for operating a hydro power plant, it may be less so. For

tractability, we opt for the simple form specified above.

The marginal abatement cost c ≥ 0 is constant and common to all regions and implies that

cleaning xi units of water comes at total abatement cost cxi. Cleanup is limited to the polluted

water that exits production, so xi ≤ (1 − δ)yi. We can think of this as the region installing some

filter at the end of its production line or, more generally, opting for a more environmentally-friendly

production technology (see e.g. Anawar and Chowdhury, 2020). Thus, the set of abatement schemes

is X = {x ∈ Rn
≥0 : x ≤ (1 − δ)y}. Given x ∈ X, the social welfare W (x) ∈ R is total quality-

adjusted benefits minus total abatement costs:

W (x) =
∑

i qi(x)bi − c
∑

i xi.

In what follows, we seek x ∈ X to maximize W . This is achieved through costly effort xi

exerted by region i to improve water quality qk(x) along with quality-adjusted benefits qk(x)bk

for downstream regions k > i. We label the optimal abatement x∗ ∈ X.3 Absent any agreements

2
We may also model damages di alongside benefits bi. For instance, the total effect on region i may instead be

qibi−(1−qi)di = qi(bi +di)−di. As the final term is simply an additive constant that has no impact on the decisions,
we recover the present model without loss. Hence, we may interpret bi as both benefit as well as absence of damage
of clean water.

3
There may be a continuum of maximizers of W , but they have a common structure; see Theorem 1. By x

∗

we mean the (unique) maximizer x of W that maximizes
∑

i xi. In terms of Theorem 1, “indifferences” are broken
towards abating.
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between the regions, we assume that there will be no pollution abatement; we label this x0 =

(0, . . . , 0). Throughout, all information is common knowledge. Figure 1 illustrates the model.

1

2

3

4

5

6

7

8

Water flows in from upstream region, possibly polluted

Inflow ei ≥ 0 of clean water is added; total water is ti ≥ 0 of quality qi ∈ [0, 1]

The region diverts yi ∈ (0, ti] units of water for production with quality-adjusted benefit qibi

The amount δyi units of water dissipates, where δ ∈ [0, 1] is common to all regions

The remaining (1− δ)yi gets polluted

The amount xi ∈ [0, (1− δ)yi] is abated at cost cxi, where c ≥ 0 is common to all regions

The remaining (1− δ)yi − xi stays polluted

All water enters the next region at a common point

Figure 1: Water flow through a generic region i. Our key point of interest is the abatement decision (black node).

3.2. Simple extensions

It is straightforward to generalize the model in many directions. Rather than a linear river,

we could allow a more general structure in which different “subrivers” merge and fork, water

and pollution splitting up accordingly. We can weaken the assumptions that the inflow is fully

clean and that the post-production water is fully polluted. A practical effect of climate change

is that water flows have become more variable and unreliable; this could be captured by letting

inflows be stochastic and instead have regions make decisions based on expectations. Moreover,

the dissipation rate and abatement costs could vary between regions. These changes only amount

to more cumbersome notation and more involved equilibrium expressions. Further extensions are

discussed in Section 9.

4. Efficiency: Maximizing social welfare

In this section, we identify the optimal abatements x∗. First, we find a concise expression for the

water quality qk as a function of abatements x. Specifically, Proposition 1 shows that qk is linear

in xi for i < k. Extending on this, we find that also social welfare W is linear in xi, so region i’s

optimal decision is a corner solution: either it chooses full abatement or no abatement at all. The

deciding thresholds are identified in Theorem 1.

4.1. Computing water quality

Recall that the water quality is the fraction of the total water that is clean. The water cleaned

by region i travels through intermediate regions j to eventually affect the water quality in region k.
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Specifically, the water cleaned by i that is not used by any intermediate j affects quality qk positively.

In this way, there is a “discounting effect”: the further i is from k, the more regions “use up” i’s

cleaned water to diminish the impact that i’s abatement xi has on k’s water quality qk. Proposition 1

makes this precise.

Proposition 1. For each scheme x ∈ X and region k ∈ N ,

qk(x) =
1

tk

∑
i≤k

ei
∏

i≤j<k

(
1−

yj
tj

)
+

1

tk

∑
i<k

xi
∏

i<j<k

(
1−

yj
tj

)
.

The difference in “discounting” arises as j’s inflow ej enters before j’s production, while j’s

cleaned water xj is only factored in after j’s production. To ease notation, we let αik ≥ 0 denote

the marginal effect of region i’s abatement on the quality-adjusted benefit of region k > i:

αik ≡
∂qk
∂xi
· bk =

bk
tk

∏
i<j<k

(
1−

yj
tj

)
.

Upstream regions are not affected by downstream abatement, so αki = 0 for k ≥ i.

4.2. Socially optimal abatement

Proposition 1 shows that quality qk is linear in xi. To be more precise, qk is typically increasing

in xi for k > i.4 As pollution only flows in one direction, regions upstream of i, so k < i, are not

affected by xi. On the other hand, i itself is affected only through the abatement cost cxi, which

again is linear in xi. Hence, when aggregated over all regions, social welfare is also linear in xi, so

the optimal level x∗i is found at one of the extremes: either x∗i = 0 or x∗i = (1− δ)yi.

Theorem 1. The socially optimal scheme x∗ is such that, for each region i, either x∗i = 0 or

x∗i = (1− δ)yi. Specifically, x∗i = (1− δ)yi if and only if
∑

k αik ≥ c.

The threshold established in Theorem 1 depends only on the factors exogenous to the model

(that is, each αik is independent of x). Region i’s abatement decision boils down to whether the

marginal impact it has on all other regions outweigh the marginal abatement costs. Having identified

the optimal abatements, we turn to the question of how to share the induced welfare gains.

5. Stability and fairness: Cooperative game

In this section, we introduce the abatement game, a cooperative game (N, v) in which v(S) is

the largest welfare gain attainable by coalition S ⊆ N when the other regions N \ S free-ride on

4
However, not always. If yj = tj for some i < j < k, so j’s production acts as a “barrier” between i and k, then

no clean water is transferred from i to k and qk is independent of xi.
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the abatement efforts of S and abstain from abating themselves. First, we formally define the char-

acteristic function v. Thereafter, Theorem 2 shows that the abatement game is convex; specifically,

it shows that the abatement game is a so called activity optimization game with complementarity.

We then argue that a natural solution to it is the game’s Shapley value.

5.1. Defining the abatement game

Let WS(x) ∈ R denote the welfare of the regions S ⊆ N at abatement scheme x ∈ X:

WS(x) =
∑

i∈S qi(x)bi − c
∑

i∈S xi.

Let XS ⊆ X be the schemes that the regions in S can implement without support from regions

outside S. That is to say, x ∈ XS sets xi = 0 for all non-members i 6∈ S:

XS = {x ∈ X : i 6∈ S =⇒ xi = 0}.

For instance, x0 ∈ XS . We are interested in the welfare gain at x ∈ XS compared to the status

quo x0. Using Proposition 1 and expressed using the marginal benefits αik, this takes on a simple

form:

WS(x)−WS(x0) =
∑
k∈S

(
qk(x)− qk(x0)

)
bk − c

∑
i∈S

xi

=
∑
k∈S

bk
tk

∑
i<k

xi
∏

i<j<k

(
1−

yj
tj

)
− c

∑
i∈S

xi

=
∑
i∈S

xi
∑
k∈S

αik − c
∑
i∈S

xi.

Absent external support from N \ S, the regions in S can guarantee welfare gain v(S) ≥ 0:

v(S) = max
x∈XS

WS(x)−WS(x0) = max
x∈XS

∑
i∈S

xi
∑
k∈S

αik − c
∑
i∈S

xi.

Let xS ∈ XS be the optimal abatement scheme for S. Proposition 2 is analogous to Theorem 1

and its proof is omitted. The difference is that the welfare gain only includes the regions in S

(meaning that the sum is taken over k ∈ S), while the “discounting effect” remains unchanged (so

the product present in αik remains over all i < j < k).

Proposition 2. For each coalition S ⊆ N , the optimal abatement scheme xS is such that, for

each region i ∈ S, either xSi = 0 or xSi = (1 − δ)yi. Specifically, xSi = (1 − δ)yi if and only if∑
k∈S αik ≥ c.

Proposition 2 implies that abatement incentives increase with the size of the coalition. If region

i optimally abates fully given S ⊆ N , then i does the same for all T ⊇ S. Going the other way,
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if i abstain from abatement in T , then i abstain in S ⊆ T as well. In particular, if i abstain from

abatement in N—that is, if it is socially optimal for i to abstain—then i abstain in all coalitions.

5.2. Activity optimization games with complementarity, convexity, and the Shapley value

In the proof of Theorem 2 below, we show that the abatement game is an instance of a so-called

“activity optimization game with complementarity” (Topkis, 1987, 2011). Indeed, this holds for a

considerably broader class of cost functions than the one with constant marginal costs studied so

far: the proof is provided for any continuous and submodular cost functions C(x, S).5 This includes

all functions separable across regions such as C(x, S) =
∑

i∈S Ci(xi) for functions Ci : R≥0 → R. It

also allows interesting cases in which abatement is cheaper the cleaner the water is, say C(x, S) =

c
∑

i∈S(1 − qi(x))xi. Note that this is not separable as qi(x) depends on the upstream regions’

abatements.

An important property of activity games with complementarity is that they are convex (Topkis,

2011, Theorem 5.4.1).6 In convex games, each player j’s marginal contribution, v(S ∪ {j})− v(S),

weakly increases with the size of the coalition S; a simple example is when each economic agent

holds a unique input and the inputs are complementary (Section 5 in Topkis, 2011, offers more

examples). Theorem 2 summarizes the discussion thus far.

Theorem 2. The abatement game (N, v) is convex.

The core C(N, v) ⊆ RN of a cooperative game (N, v) consists of all payoffs such that each

coalition S is adequately compensated. In other words, an agreement based on core payoffs ensures

that the welfare-maximizing solution of the grand coalition N cannot be overthrown by any coalition

S ⊆ N acting in their self interest:

C(N, v) =

{
x ∈ RN :

∑
i∈N

xi = v(N) and, for each S ⊆ N ,
∑
i∈S

xi ≥ v(S)

}
.

For convex games, Shapley (1971) showed that the core has a particular structure and is non-empty.

Thus, by Theorem 2, we can always allocate the welfare gains in such a way that the optimal solution

is sustained. One way of doing so is through the celebrated Shapley value (Shapley, 1953), which

always provides a core allocation for convex games (see e.g. Moulin, 1988; Peleg and Sudhölter,

2007, for further normative underpinnings). The solution awards region i a payoff according to i’s

weighted marginal contribution:

φi(N, v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) .

5
We redefine WS naturally as WS(x) =

∑
i∈S qi(x)bi − C(x, S). Otherwise the game is unchanged.

6
The game (N, v) is convex if, for each j ∈ N and S ⊆ T ⊆ N , v(S ∪ {j})− v(S) ≤ v(T ∪ {j})− v(T ).
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Absent a central planner to enforce the Shapley value distribution between the regions, we will

next seek a decentralized implementation of it. That is to say, we wish to design a game to be

played between the regions for which equilibrium play yields Shapley value payoffs to the regions.

6. Decentralized implementation: The bidding mechanism

In this section, we introduce the bidding mechanism of Pérez-Castrillo and Wettstein (2001).

This mechanism is appealing for several reasons. From a technical viewpoint, it implements the

Shapley value payoffs in subgame-perfect equilibrium. That is to say, in every such equilibrium of

this non-cooperative game, the players obtain the desired payoffs (compared to, say, obtaining these

payoffs in expectation). The mechanism has the advantage that there is no pre-specified order on

the players, say to fix the order in which they take action. Moreover, it is well suited for practical

implementation as it is finite.

The bidding mechanism runs in multiple stages. It ends in one region proposing a solution for

the others to sequentially accept or reject. In equilibrium, the proposal will be carefully constructed

to award the others just enough that they accept, leaving as much as possible to the proposer. Thus,

the proposer holds an advantageous position. For this reason, the proposal stage is preceded by a

bidding stage in which the regions bargain for the proposal right. The mechanism very concretely

ensures that the proposer makes a fair proposal: each region has veto power, and if the proposal is

rejected by anyone, then the proposer gets excluded from the negotiations (which reset with a new

bidding round). Intuitively, the region leaves a proposal for the others to contemplate and exits the

negotiations not to be let in again—if all regions accept the proposal, it is implemented; if some

region does not, then the negotiations proceed in the same format but the current proposer no

longer participates.

Next, we define the bidding mechanism. Thereafter, we analyze a particular equilibrium of the

induced game. Finally, we provide a practical implementation of the mechanism through a smart

contract.

6.1. Formalizing the bidding mechanism

There are two stages in the bidding mechanism. The first always includes payments between

some regions while the second only does so if the proposal is accepted (in which case the mechanism

terminates thereafter).

Bidding stage. Each region i bids βij ∈ R to region j. This is interpreted as i being willing to pay

βij to j for i to get the proposal right. We may have βij < 0, but we will see that equilibrium bids

are non-negative in the present setting.

For each region i, we compute the net bid Bi =
∑

j β
i
j −

∑
j β

j
i . If positive, then i is willing to

pay more to the others for the proposal right than they are willing to pay i. In this way, the larger

Bi, the more “valuable” the proposal right seemingly is to i. The proposer is selected as the region

11



with the highest net bid. If there are several to choose from (which happens in the theoretical

equilibrium), then any selection from these can be done (for instance, a uniformly random draw

appears appealing). At this point, all bids by the proposer are paid out. Hence, with i denoting the

proposer, region j 6= i receives βij from i. All other bids are discarded.

Proposal stage. The proposer i leaves an offer for the others to consider and exits the negotiations.

Specifically, the proposer offers γj ∈ R to each region j 6= i. In sequence, the regions evaluate the

proposal and choose whether to accept or reject it. If all accept, then the proposal is implemented:

each region j 6= i then exits with a total payoff βij + γj while the proposing region i keeps the rest,

v(N)−
∑

j 6=i

(
βij + γj

)
. On the other hand, if some region rejects the proposal, then we return to

the bidding stage and i is excluded from the negotiations. The bids βij already paid out are not

refunded, so the proposer has a strong incentive to make a fair offer that all regions accept. At the

same time, once i is excluded, the amount at stake changes (typically reduces) to v(N \ {i}), which

limits the incentives for the other regions to reject the proposal.

6.2. Equilibrium behavior

We restate the result of Pérez-Castrillo and Wettstein (2001) adapted to the present context. It

shows that the bidding mechanism provides a decentralized implementation of the Shapley value.

That is to say, as long as the regions agree on the negotiation protocol—that is, to use the bidding

mechanism—no “social planner” or third parties are needed to achieve the desired outcome. Once

the rules of the game are in place, the interaction between the regions, each acting individually and

in their own self interest, yields a fair division of the optimal welfare gains.

Theorem 3. (Pérez-Castrillo and Wettstein, 2001, Theorem 1) The bidding mechanism imple-

ments the Shapley value of the abatement game in subgame-perfect Nash equilibrium.

Pérez-Castrillo and Wettstein (2001) also provide an intuitive equilibrium that we will recon-

struct here. Let φ(N) ≡ φ(N, v) denote the Shapley value of the abatement game (suppressing v),

where φj(N) is region j’s payoff. Let also φ(N \ {i}) denote the Shapley value of the reduced

game that arises when region i is excluded from partaking (which occurs if i makes a proposal

that gets rejected). Then the equilibrium is as follows: In the bidding stage, each region i bids

βij = φj(N) − φj(N \ {i}) to region j 6= i. In the proposal stage, with i denoting the proposer,

region j 6= i is offered φj(N \ {i}). When evaluating the proposal, region j 6= i accepts the of-

fer if and only if j is awarded at least φj(N \ {i}). In this equilibrium, the negotiations end in

the first “round”—no proposal is ever rejected. The proposer i offers precisely the amount to j

that j is willing to accept. Final payoffs coincide with the Shapley value: for each region j 6= i,

βji + γj = φj(N)−φj(N \ {i}) +φj(N \ {i}) = φj(N). The payoffs of the game distribute the same

amount as the Shapley value does, namely v(N), so the proposer i obtains φi(N) as desired.
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Taking a closer look at the equilibrium bids, βij = φj(N)−φj(N \ {i}), the “balanced contribu-

tions property” (Myerson, 1980) implies that they will be symmetric. Hence, the bid that i makes

to j coincides with the bid that j makes to i. For this reason, the net bids Bi add to zero for every

region i—that is, in equilibrium, anyone can be chosen as the proposer.

In Pérez-Castrillo and Wettstein’s (2001) original formulation, they require the underlying game

merely to be zero-monotonic.7 Here, Theorem 2 showed that the abatement game is convex, which

implies zero-monotonicity. For convex games, Sprumont (1990) shows that the Shapley value is

population monotonic. This means that, the more regions that cooperate, the higher the award

every region. That is to say, not only is there an increase in what is at stake (that is, the sum

of payoffs), but the Shapley value even ensures that every region sees their payoff go up. Most

importantly, φj(N) ≥ φj(N \ {i}). This implies that i’s equilibrium bid to j, φj(N)− φj(N \ {i}),
is non-negative. The same holds true for i’s proposed offer φj(N \ {i}) to j.

6.3. Blockchains and smart contracts

We will now argue that the bidding mechanism is well suited for practical implementation.

In what follows, we provide a simplified introduction to the relevant technology consisting of

blockchains and smart contracts.8 This is intended to show the usefulness of smart contracts for

practical mechanism design in general; in Subsection 6.4, we turn to the particular case of the

bidding mechanism.

A smart contract is a piece of code that governs a set of variables and provides functions to

modify these variables. The code is publicly available and can be inspected by all parties before

use to ensure that it works as intended. Interactions with the contract occur through transactions,

which may specify functions (in the contract) to run as well as inputs to run them on. An ele-

mentary feature is that a transaction may transfer value between accounts through an associated

cryptocurrency. This can for instance be from the user to the contract (say as a deposit) or the

other way around (say by calling a “refund” function within the contract that returns the deposit

from the contract’s account).9 For efficiency purposes, transactions are grouped together and ran

sequentially in blocks. The blocks are cryptographically chained in the sense that each block con-

tains a pointer to the block it extends on. This permits a consistent, global view of the current

state of the contract: anyone can rerun all transactions from the contract’s inception to the most

recent block and thereby determine the current values of the contract’s variables. Once the contract

is deployed on the blockchain, it obtains a unique address and its code is forever fixed. In this way,

7
The game (N, v) is zero-monotonic if, for each S ⊆ N and i ∈ N , v({i}) + v(S) ≤ v(S ∪ {i}). This is satisfied

for the abatement game: the game is monotonic, v(S ∪ {i}) ≥ v(S), and v({i}) = 0.
8
Many excellent sources cover these topics in greater detail; we refer the interested reader to Nakamoto (2008),

Ferguson et al. (2010), Katz and Lindell (2014), Damg̊ard et al. (2020), and http://ethereum.org.
9
This provides a simple way to incentivize users: all may be required to make a deposit at the outset, but only

those who act as intended get refunded in the end.
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users are safe in knowing that no one can “override” the contract and make it do something beyond

its intended functionalities—no one can for instance empty the contract’s balance unless there is a

function specifically for this purpose.

We will argue that smart contracts pose an ideal decentralized replacement for the social plan-

ners, auctioneers, and centralized clearinghouses prevalent in economic theory. For instance, tasks

typically assigned a trusted auctioneer—receiving bids, identifying winners, transferring funds—can

be automated through the contract. This not only eliminates the need for trust but also signifi-

cantly reduces transaction costs.10 While it will become apparent how smart contracts easily can

be used to run sequential-move games, we will next explain how to go even further to also capture

simultaneous-move games and random events.

In many economic interactions, it is desirable that agents act “simultaneously”, that they in-

dividually make choices without information on the others’ choices. While transactions in smart

contracts inherently are “sequential” rather than “simultaneous”, this can still be resolved through

elementary cryptography (see e.g. Damg̊ard et al., 2020). Specifically, a cryptographic hash function

H maps inputs α of any size to outputs of a fixed size in such a way that computing H(α) is easy

while reverse-engineering an input α from an output H(α) is hard. “Simultaneous” choices can

then be achieved through a “commitment” and a “reveal” phase: first, each user submits her en-

crypted action, H(α); once all such transactions have been processed, each user submits her actual

action α. The contract checks that the action matches the encrypted commitment. For instance,

to run “rock, paper, scissors”, each player selects a number α ∈ N, where α mod 3 determines

the associated action (say α mod 3 = 0 is “rock”, 1 is “paper”, and 2 is “scissors”). Each player

sends H(α)—from which the other cannot infer α—and thereafter sends α. The contract can then

determine the winner according to the rules of the game and potentially transfer funds. A similar

approach can be used to generate “random” numbers. Again, each user commits to H(α), reveals

α, and then the α’s combine to generate a “random” number H(α1α2 . . . ) ∈ {0, 1, . . . , n}. For in-

stance, with the secure hashing algorithm SHA-256, there are n = 2256−1 possible outputs. In this

way, smart contracts provide a great way to run both simultaneous, sequential, and probabilistic

mechanisms. Our implementation of the bidding mechanism employs many of these ideas.11

10
There are costs associated to interacting with a smart contract as well. For the Ethereum blockchain, each

instruction has a “gas” cost. For instance, for our implementation presented in Subsection 6.4, each region essentially
transacts five times with the contract to alter different variables in its storage. On average, each such transaction
costs roughly 100 000 gas. Each unit of gas costs a number of gwei (a basic unit of Ethereum’s cryptocurrency) to
execute. This price is set by the user. Setting it high ensures that high-priority transactions get registered within
seconds. For the current application, it would seem a reasonable time frame is rather several hours, so users would get
by with a considerably lower price. The transaction would then get registered during times of low network demand.
All numbers below fluctuate considerably over time; the ones presented were observed in September, 2021. Gas prices
are in the range of 20 gwei, so the five transactions of 100 000 gas each cost 10 million gwei, which is 0.01 ether. The
exchange rate to USD at the time was 3 600 USD for one ether. Hence, executing the contract would cost each region
roughly 36 USD. The code has not been optimized to any degree, so there are presumably ways to reduce this cost.

11
We refer to https://github.com/jensgudmundsson/AbatementSmartContract for a complete prototype of the
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6.4. Smart contract implementation of the bidding mechanism

In what follows, we describe how to practically implement the bidding mechanism through a

smart contract in several phases. To make it fully operational in practice, some extra steps are

added (for instance, the set of players is clear from the outset in the bidding mechanism, but we

include a registration phase first). In the contract, a variable called state keeps track of the current

phase and ensures that only valid operations are executed throughout. We detail the phases below.

Deployment of the contract. When initialized, the contract expects three parameters, namely the

number of participating regions n, a possible deadline after which deposited funds can be refunded,

and a fixed deposit F that each region will provide. Fixing the number of regions from the outset

is necessary to know when to move from the registration to the deposit phase below (this could

also be achieved by having a registration deadline). A deadline after which refunds are possible

is to ensure that the regions’ deposits do not get stuck in case someone makes a mistake when

interacting with the contract and it fails to terminate. When regions first deposit to the contract,

we take as given that they deposit the fixed deposit F and their welfare change from cooperation

compared to the status quo, that is, region k deposits F +
∑

i xiαik − cxk. The latter part may

be negative, so F must be set large enough to ensure that deposits are non-negative. Once the

mechanism terminates, each region is refunded the fixed deposit F .

Registration phase. Each region calls the contract’s register function to link the region to its

address on the blockchain. Intuitively, think of this as the region opening an “internal bank account”

within the contract. Once all partaking regions have done so, we proceed to the next phase.

Deposit phase. Each region deposits an amount to the contract, here taken as the fixed deposit F

and the region’s welfare change from cooperation compared to the status quo. In this way, once all

regions have made their deposits, the contract’s balance is nF + v(N). When calling the deposit

function, the transacted funds are added to the “internal bank account” connected to the region.

In this way, if the mechanism does not finish before the set deadline, anyone can call the abort

function to refund all regions according to their “internal balances”.

Commitment phase. Bidding stage, part 1: Each region submits their encrypted bid (corresponding

to β). Specifically, to commit to the bid [βi1, β
i
2, . . . ], the region computes the hash value of the array

[βi1, β
i
2, . . . ] and submits it to the commit function.12

Reveal phase. Bidding stage, part 2: Each region submits their actual bid together with enough

funds to cover the bid. For instance, the transaction value for the bid [βi1, β
i
2, . . . ] needs to be at

least βi1 + βi2 + . . . . The contract stores the bid if it matches the encrypted commitment. Once all

smart contract for the Ethereum blockchain.
12

For convenience, our implementation provides a DEBUGgetHash to obtain this value.
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regions have revealed their committed bids, the contract computes the net bids to determine the

proposer. The proposer’s bids are executed through transfers between the “internal bank accounts”.

Proposal phase. Proposal stage, part 1: The proposer submits their proposal in the same way as

when revealing their actual bid in the previous phase. Again, the transaction value needs to cover

the proposal and the balance of the proposer’s internal account gets increased accordingly.

Evaluation phase. Proposal stage, part 2: Each region accepts or rejects the proposal. If all accept,

then the proposal is implemented. This is done first internally: the proposed amounts are deducted

from the proposer’s account and added to the other regions’ accounts, while the initial deposits go

the other way (that is, the proposer keeps v(N) less the bids paid out). Once all internal balances

are updated, the actual transfers back to the regions take place, and then the contract terminates.

If instead some region rejects the proposal, then the contract resets in the following sense. First,

all regions are paid out according to their internal accounts—this means that the rejected proposer

makes a loss as her bids were paid out at the end of the reveal phase. Thereafter, the proposer is

turned inactive for the remainder of the mechanism and the contract returns to the deposit phase.

For practical purposes, it may be desirable to postpone payment to the regions until they provide

proof that they have abated as agreed. This can be achieved using tools of the “Internet-of-Things”:

the regions can position multiple sensors along the river, which report data directly to the smart

contract. A region is then paid only if the reported water quality is adequate. To give an example,

Singh et al. (2020) suggest an IoT sensor-based blockchain framework for temperature monitoring.

Taken together, the “time line” of the game is as follows. First, the regions conclude “what is

at stake”, that is, the individual welfare changes from optimal abatement. Thereafter, the regions

interact through the smart contract. Hence, abatement levels remain at the status quo x0 until

agreement on how to share the gains is reached. Once concluded, each region is guaranteed some

net payments from the contract: this can either be positive (so the region gets more refunded from

the contract than it pays into it; this typically happens for abating countries) or negative. These

funds get released once the region has abated according to the optimal plan (say made operational

by measuring water quality along the river). For the abating regions, the positive net payments

from the contract then cover the abatement costs as well as leaves the region some share of the joint

welfare gain (namely their Shapley value payoff). For the other regions, the potentially negative

net payments from the contract get offset by the benefit increase due to improved water quality;

again, the end net effect equals their Shapley value payoff.

7. Numerical example

To illustrate all aspects of the preceding sections, we consider a four-region river with inflows

e = (8, 2, 2, 0). Let δ = 1/2, so half the water used for production dissipates. The production plan is
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y = (4, 4, 8, 4), which yields water totals t = (8, 8, 8, 4). Hence, the two last regions use all available

water for production. Benefits are b = (12, 48, 24, 32) and the unit cost is c = 4.

As a baseline, we can examine the status quo x0 = (0, 0, 0, 0): we obtain q(x0) = (1, 3/4, 5/8, 0),

u0 ≡ q(x0)b − cx0 = (12, 36, 15, 0), and W (x0) = 63. This is improved considerably when all

but the last region abate fully, so x = (2, 2, 4, 0), for which we obtain q(x) = (1, 1, 1, 1) and

W (x) = 84. However, the socially optimal scheme is x∗ = (2, 0, 4, 0), for which q(x∗) = (1, 1, 3/4, 1),

u∗ ≡ q(x∗)b− cx∗ = (4, 48, 2, 32), and W (x∗) = 86. Thus, welfare changes for the individual regions

by u∗ − u0 = (−8, 12,−13, 32) and increases overall by W (x∗) − W (x0) = 23. Hence, optimal

abatement and water quality need not be monotonic as exerting costly abatement only is meaningful

if it creates sufficient downstream benefit.

For the abatement game, the non-zero elements of the characteristic function are v({1, 2}) =

v({1, 2, 4}) = 4, v({1, 2, 3}) = 7, v({3, 4}) = v({1, 3, 4}) = v({2, 3, 4}) = 16, and v(N) = 23.

Table 1 shows the Shapley value φ(N) of the abatement game as well as those of the reduced games,

φ(N \ {i}). From this, we can deduce each region i’s equilibrium bid βij = φj(N)−φj(N \ {i}) and

proposal γj = φj(N \ {i}) to the other regions j.

Region 1 2 3 4

φ(N) 3 3 9 8

φ(N \ {1}) 0 8 8
φ(N \ {2}) 0 8 8
φ(N \ {3}) 2 2 0
φ(N \ {4}) 3 3 1

Table 1: The first row gives the Shapley value of the abatement game. Later rows present the Shapley values of the
reduced games following one region’s exclusion.

When initializing the smart contract, we set the fixed deposit F large enough to make all regions

deposit a positive amount. Recall that the individual welfare changes are (−8, 12,−13, 32). Hence,

the largest individual loss created by the change from x0 to x∗ is 13 (region 3 pays for full abatement,

16, but only gains 3 from the quality increase due to region 1’s abatement). Here, we set F = 16,

but any F ≥ 13 suffices. Hence, the regions will deposit F + (−8, 12,−13, 32) = (8, 28, 3, 48). We

refer to Table 2 for a summary of the “internal balances” throughout the phases of the contract.

To find region i’s bid, we compute φ(N)− φ(N \ {i}) through Table 1. For region 1, we obtain

β1 = (−, 3, 1, 0). In Table 2, row 3, we assume that each region i transfers exactly
∑

j β
i
j in the

reveal phase, but also larger deposits would be completely risk-free and simply held by the contract

until it terminates and the excess is returned.

Recall, equilibrium bids are symmetric and net bids zero. Hence, any region can be chosen

to be the proposer; in what follows, we choose region 1. In Table 2, row 4, internal transfers

matching region 1’s bids are conducted. From Table 1, we immediately find region 1’s equilibrium
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Region 1 2 3 4

1. Registration 0 0 0 0

2. Deposit of F +
∑

i xiαik − cxk for each region k + 8 + 28 + 3 + 48

3. Deposit to cover committed bids + 4 + 4 + 10 + 8

4. Proposer’s bids carried out − 4 + 3 + 1

5. Deposit to cover proposal by region 1 + 16

6. Proposal accepted and carried out − 16 + 8 + 8

7. Proposer gets
∑

i xiαik − cxk from each region k + 31 − 12 − (−13) − 32

Table 2: Throughout the different phases of the contract, each region’s “internal account” is updated following deposits
and transfers.

proposal, namely γ1 = φ(N \ {1}) = (−, 0, 8, 8). In Table 2, row 5, we assume that region 1

transfers precisely the amount needed to cover the proposal, namely 0 + 8 + 8 = 16; again, larger

amounts would work as well. If any region would reject the proposal, then all would be refunded

their balances at this point. Region 1 would make a loss of 4 (the bids just transferred) while

regions 2 and 3 respectively gain 3 and 1. However, the amount at stake would be reduced from

v(N) = 23 to v(N \ {1}) = 16. If instead the proposal is unanimously accepted, then the proposed

amounts are transferred away from the proposer, Table 2, row 6, while the individual welfare

changes that make out v(N) are transferred from the others to the proposer, row 7. The final

balances then get refunded to the regions. The net effect of the interaction with the contract is

derived by looking at the steps in which internal transfers are conducted, namely rows 4, 6, and 7

in Table 2. These amount to (−4, 3, 1, 0) + (−16, 0, 8, 8) + (31,−12, 13,−32) = (11,−9, 22,−24).13

Once the negotiations conclude, the actual abatement takes place: the abating regions 1 and 3 incur

abatement costs while the others derive benefit from improved water quality. Specifically, recall that

the individual welfare gains are (−8, 12,−13, 32). Thus, once optimal abatement is implemented, the

total welfare gain compared to the status quo is (11,−9, 22,−24) + (−8, 12,−13, 32) = (3, 3, 9, 8),

which is precisely the Shapley value payoffs.

8. Simulation study

To get a better understanding of who the “winners” are when distributing the common welfare

gain according to the Shapley value of the abatement game, we conduct a simulation study. Instances

are randomly generated with some fixed parameters. Specifically, we consider n = 12 regions,

marginal costs c = 4/5, and dissipation rate δ = 1/2. Water totals are kept constant at ti = 12, so

13
Alternatively, we can sum all entries in Table 2 to obtain (39, 23, 35, 32). This is the amount paid back to the

regions from the contract. From this, we subtract the amount paid into the contract by the regions, namely rows 2,
3, and 5, which add up to (28, 32, 13, 56).
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e1 = 12 and otherwise ei = δyi−1. That is to say, i’s inflow is just enough to cover the dissipation in

i−1. Production y and benefits b are drawn uniformly and independently from {1, 2, . . . , 12}. (The

two may of course be correlated in practice. Here, they are independent, so we can distinguish the

two effects.) We examine 10 000 instances, restricting to non-trivial instances with v(N) > 0. We

describe in Appendix B how to quickly compute the characteristic function v for each instance.

Table 3 summarizes a regression on the output of the simulations. It shows how the Shapley

value of region i is affected by a variety of variables.

Variable Coefficient Variable Coefficient Variable Coefficient

Location i 0.121 Benefit bi−1 0.020 Production yi−1 −0.029

Squared location i2 −0.012 Benefit bi 0.109 Production yi −0.018

Abatement 0.213 Benefit bi+1 0.062 Production yi+1 −0.067

Table 3: Regression on 100 000 observations (10 countries and 10 000 instances) with dependent variable being the
Shapley value of region i. Regions 1 and n, which lack one neighbor, have been excluded. All variables are always
significant, with even the smallest t-statistic above 40.

For the location, the results show a concave, quadratic relationship: being closer to the “middle”

of the river is beneficial.14 This is intuitive: these regions are relatively “close” to everyone and can

benefit from cooperation with regions both up and down the stream. On the other hand, a coalition

such as {1, n} is rare to create any welfare gain, so the most up- and downstream regions fall short

in this respect. Next, the variable abatement takes on value 0 or 1 depending on whether the region

chooses full abatement in the social optimum. The results show that abatement has a large, positive

impact. That is to say, the Shapley value favors regions that optimally abate. Indeed, the average

payoff of an abating region is approximately 2.8 times the average payoff of a region that abstains

from abatement.

Turning to the benefits, the results show that the awards increase with the value of the region’s

production. Indeed, we find that region i’s award is increasing also in the benefits of the neighboring

i − 1 and i + 1. It is increasing in bi+1 as i’s abatement efforts then come with a greater welfare

gain. A potential way to explain that it also increases in bi−1 is that the higher bi−1, the easier it is

to convince regions before i− 1 to abate when i is added to the coalition. Lastly, production moves

in the opposite direction. Recall that production and benefits are independent here: therefore,

increased production merely increases the “discounting effect” of abatement. The higher yi, the

less abatement by regions upstream of i affects regions downstream of i. Hence, the larger yi, the

smaller the abatement incentives for the upstream regions. The intuition is the same for yi−1, albeit

with a smaller impact. Finally, the larger yi+1, the smaller i’s incentives for pollution abatement.

14
The effect is not fully represented in the regression as the two extreme regions are skipped; compare Figure 2.
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This effect is the largest of the three, as it pertains to i’s abatement decision (which in itself was

found to have a large effect).

To summarize, the regions that reap the largest share of the welfare gains are typically close to

the middle of the river. They optimally adopt full abatement, have high-valued production (high

bi), and their abatement efforts trickle further downstream (small yi+1).

Finally, Figure 2 illustrates some further observations from the simulation study. Regions are on

the horizontal axis. On the left vertical, we measure the share of the Shapley value, corresponding to

the solid curve. Specifically, in each instance, we compute each region’s share of the total gain; these

values are then averaged over all 10 000 instances. It confirms the intuition developed above: regions

in the middle are best off. On the right vertical, we measure percentages. Specifically, the dashed

curve shows how often the region abates in the socially optimal solution. This is at a fairly constant

level before dropping off at the end. Intuitively, region i needs to affect at least a few downstream

regions for abatement to be worthwhile (explaining the drop at the end), but the discount effect is so

large that it does not make a big difference if it affects even more regions (explaining the constant

level at the start). Lastly, the dotted curve shows the fraction of contribution vectors in which

region i makes a positive contribution. Recall, the Shapley value is the average contribution that i

makes in the n! different orders. Here, we do not take the value of the contribution into account,

we simply check whether the contribution is positive or not. This follows a similar trajectory as

the Shapley value (the solid curve) except towards the end. We can interpret this as that the most

downstream regions, in relative terms, contribute more often but in smaller amounts.
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Figure 2: On the left axis, the region’s share of the Shapley value is measured (averaged over 10 000 instances). For
instance, region 3 gets on average 9% of the total gain. On the right axis, we measure (dashed) how frequently the
region abates at the social optimum and (dotted) the fraction of contribution vectors in which the region makes a
positive contribution.

20



9. Concluding remarks

We have studied fair allocation of the welfare gains of efficient river pollution abatement. For

this purpose, we developed a novel model in which costly upstream pollution abatement increases

downstream quality-adjusted benefits. We identified the optimal abatement levels and then sug-

gested a fair way to share the welfare gain between the regions. Specifically, we defined an associated

cooperative game to which the Shapley value was a natural solution. Thereafter, we proposed a

decentralized implementation of this solution. In particular, we showed how Pérez-Castrillo and

Wettstein’s (2001) bidding mechanism can be implemented in practice through a smart contract,

allowing the regions to negotiate without external involvement and reducing transaction costs.

Lastly, we explored through a simulation study how the Shapley value distributed the welfare gain

among the regions.

In addition to the extensions mentioned at the end of Section 3, there are several promising

alternative specifications that we leave for future research.

First, our study does not concern the pollution decisions—the production plan is held fixed—

but rather the thereon following abatement decisions. An interesting extension is to let the regions

decide on both the production and abatement levels. Benefits would then depend increasingly on

production (say bi is a strictly increasing and concave function in the production yi). If all water

used for production dissipates, δ = 1, so there in effect is no pollution, then we recover the river

sharing model of Ambec and Sprumont (2002). In this particular setting, Gudmundsson et al. (2019)

suggest a decentralized mechanism that involves announcements of production levels followed by

a bargaining stage on welfare gains. This type of a mechanism extends naturally even when there

is pollution to take into account. Specifically, in the first stage of Gudmundsson et al.’s (2019)

mechanism, the regions would announce both production and abatement levels. Details on how the

first-stage announcements affect the second-stage bargaining rights may need to be adjusted to the

richer pollution setting. As with the bidding mechanism, it can be implemented through a smart

contract.

Second, the status quo has been assumed to be that no region abates whatsoever. This has a

decisive impact on the equilibrium payoffs: for instance, the most upstream region is compensated

fully for all pollution abatement it undertakes. This is in some contrast to the “polluter pays

principle”, under which the polluter is held fully responsible. An alternative is to speak more

generally of the status quo x0 ∈ Rn
≥0 rather than set it specifically to (0, . . . , 0). In this way, x0i

would be i’s mandatory abatement: in equilibrium, i presumably would cover this part, while any

abatement on top of x0i would be covered by the downstream regions that benefit from the cleaner

water. Interpreted in terms of international water law, such a change would move us towards the

principle of limited territorial sovereignty and away from absolute territorial sovereignty.15 Another

15
As described by Salman (2007), ATS means that “a state is free to dispose, within its territory, of the waters of
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alternative is to fix a minimum water quality q̄ ∈ [0, 1] (say pertaining to a tipping point at which

the river is beyond rescue) throughout. That is to say, pollution abatement has to be such that the

water entering (or exiting) each region i is at least q̄. This may lead to an interesting difference

when computing the value of a coalition S for the cooperative game. Specifically, S now needs to

take into account that the it abates, the less the non-members N \ S are required to do.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Let ck ≥ 0 denote the amount of clean water available to region k (not to be confused with the

cost c, which is irrelevant here), so qk = ck/tk. The clean water comes from three sources: k’s own

clean inflow ek, the water cleaned by k − 1, namely xk−1, and the clean water that entered but

was not used for production in k− 1. Specifically, k− 1 used the fraction yk−1/tk−1 of its available

water; hence, the amount of clean water it did not use is(
1−

yk−1
tk−1

)
ck−1.

Using c1 = e1 and defining x0 ≡ 0,

ck = ek + xk−1 +

(
1−

yk−1
tk−1

)
ck−1

= ek + xk−1 +

(
1−

yk−1
tk−1

)
(ek−1 + xk−2) +

(
1−

yk−1
tk−1

)(
1−

yk−2
tk−2

)
ck−2

...

=
∑
i≤k

(ei + xi−1)
∏

i≤j<k

(
1−

yj
tj

)
.

Divide by tk to obtain the desired expression for qk = ck/tk.

Appendix A.2. Proof of Theorem 1

Recall that W (x) =
∑

i qi(x)bi− c
∑

i xi. Differentiate with respect to xi and reformulate using

the marginal benefits αik:

∂W

∂xi
=
∑

k

∂qk
∂xi
· bk − c =

∑
k αik − c.

If the expression is positive, then W is increasing in xi, so x∗i = (1−δ)yi. If negative, then x∗i = 0.

Appendix A.3. Proof of Theorem 2

We will show that the abatement game is an activity optimization game with complementarity.

Specifically, we show how our model can be relabeled to fit the one of Topkis (2011, Section 5.4).
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Each player (region) has a single private activity (abatement) and there are no public activities.

The set of feasible activity levels is X. The return function is g(x, S) = WS(x) − WS(x0) =∑
i∈S xi

∑
k∈S αik −C(x, S). The cost function C is submodular (so −C is supermodular) in (x, S)

on {(x, S) : S ⊆ N, x ∈ XS} and upper semicontinous in x on XS for each S ⊆ N . The first term,∑
i∈S

xi
∑
k∈S

αik,

is supermodular (as well as submodular), so g is the sum of supermodular functions and itself

supermodular. The characteristic function is here labeled v rather than f .

Convexity of the abatement game now follows from Theorem 5.4.1 in Topkis (2011).

Appendix B. Supplementary material to simulation study

Here, we will describe a simple way to compute the characteristic function v for the abatement

game. Recall from Proposition 2 that

v(S) =
∑
i∈S

xSi
∑
k∈S

αik, where xSi =

(1− δ)yi if
∑

k∈S αik ≥ c

0 otherwise.

We proceed as follows. First, compute A ∈ RN×N with generic entry aik = (1−δ)yiαik for i 6= k and

aii = −(1− δ)yic on the diagonal. This key step needs only to be done once. Second, fix a coalition

S ⊆ N and copy A to AS ≡ A. “Zero out” the rows and columns that pertain to non-members

of S: for each {i, k} 6⊆ S, set aSik = 0. Hence, in the updated matrix, aSik 6= 0 =⇒ {i, k} ⊆ S. Third,

sum the entries of row i ∈ S: if negative (that is, if
∑

k∈S αik < c), zero out also row i. The value

v(S) is the sum of the entries in the final matrix AS . In this way, we can quickly compute all of v

by repeatedly modifying the original matrix A.
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