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Incorporating quality in economic regulatory 
benchmarking 
Emil Heesche1, Mette Asmild2 

Abstract 
The Danish water regulator uses, among other things, Data Envelopment Analysis to create a pseudo-

competitive environment for the water companies. The benchmarking results are used to set an individual 

revenue cap for each company. The benchmarking model is currently criticized for not including the 

companies’ supply quality and thereby has an omitted variable bias problem. The regulator has, therefore, 

initiated an extensive effort to try to incorporate supply quality in the regulation. One problem the regulator 

has encountered is that incorporating supply quality in the benchmarking model tends to increase the revenue 

caps more than desired. The regulator does, however, not have any prior information about the quality 

variables and their trade-offs to the remaining variables which make it challenging to reduce the supply 

quality’s impact on the revenue caps.  

In this paper, we analyze the facet structure when incorporating three quality variables into the existing model. 

The facet structure gives important insights into the trade-offs between the companies costs and their level of 

quality. We argue that it is generally sensible to investigate the facet structure and ensure that it is trustworthy 

before calculating efficiency scores, in order to increase the credibility of the results. 

By using an outlier detection model on the estimated trade-offs we use the insights for the facet structure to 

create weight restrictions between costs and quality, which gives the companies incentives to reveal private 

information about their true trade-offs. This can help the regulator incorporate quality in the model without 

allowing the efficiency scores to increase excessively due to the increase in dimensionality. In addition, we 

propose to set weight restrictions based on the consumer’s willingness to pay for quality to avoid the 

companies choosing a level of quality that is higher than what the consumers are willing to pay. 

 

Keywords Data Envelopment Analysis; Regulation; Facet structure; Weight restrictions; Trade-off 
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1 Introduction 
The Danish drinking- and waste-water companies are natural monopolies. The consumers cannot choose which 

provider to use and are therefore forced to use the local water company. Without regulation, the companies 

have incentive to set high monopoly prices and deliver poor quality. The Danish water regulator (KFST), 

therefore, regulates the sector by creating a pseudo-competitive environment with the use of benchmarking. 

Using benchmarking in regulation is not unique for the Danish drinking- and waste-water sector and is for 

example discussed in Agrell, Bogetoft, & Tind (2005), Dai & Kuosmanen (2014) and Ramanathan, Ramanathan, 

& Bentley (2018). The main idea in the Danish regulation is that a company is not allowed to set a higher price 

than other comparable companies do. KFST sets a revenue cap for each company to control the prices, by 

benchmarking the companies’ costs against a measure for how much water they deliver, adjusted for several 

underlying conditions (Heesche & Asmild, 2020). The revenue cap is set equal to the most efficient companies’ 

costs adjusted for the underlying conditions. 

The benchmarking model used by KFST tries to control for as many differences in underlying conditions as 

possible. It does, however, not control for the quality of the water provision. For drinking water, quality is 

defined as safe and stable provision of good quality drinking water. For waste water, it is safe and stable 

management of wastewater, where the discharges of water have no negative impact on the environment. In 

this paper, we focus on the drinking water sector (hereafter water sector). Not considering quality in the 

existing model has led to two criticisms: 

1) Companies with high quality, and thereby high costs to ensure this, can be compared to companies with low 

quality and thereby low costs. KFST only has information about the companies’ total costs and can therefore 

not control for costs associated with ensuring high quality. The comparison, therefore, seems unfair. As a 

result, companies with low quality are allowed to have too high revenue and companies with high quality are 

forced to either lower their quality or be even more efficient than the low-quality companies. In other words, 

the model has an omitted variable bias. 

2) Quality and economic efficiency are today regulated uisng two different regulations. This means, that 

neither regulation takes into account the correlation between the two. 

The Danish politicians have, therefore, asked KFST whether it is appropriate to incorporate quality in their 

economic benchmarking model. However, this should only happen on the condition that KFST does not reduce 

the yearly cost-reduction requirement among the companies substantially. 

KFST’s uses both data envelopment analysis (DEA) and stochastic frontier analysis (SFA) in their benchmarking 

model. In this paper, we solely focus on DEA. It is well-known that DEA often estimates extreme multiplier 

weights to give the companies the best possible efficiency scores; DEA gives the benefit of the doubt to the 

companies. To make sure that quality does not influence the cost-reduction requirements too much, KFST 

could, therefore, try to reduce the number and size of extreme multipliers by only allowing realistic trade-offs 

between costs and quality. We define a trade-off as the ratio between two multipliers and it can be interpreted 

as how much you can improve one variable if you worsen the other. The problem for KFST is that they do not 

know which trade-offs are realistic. 

In this paper, we aim to estimate a technology where the frontier has as few unrealistic trade-offs as possible 

without relying on prior information about which tradeoffs are inappropriate. Therefore, we first examine the 
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facet structure of the DEA-estimated frontier to study the trade-offs between quality and costs in the DEA 

framework. Hereafter, to improve the estimation of the trade-offs and to fulfil the political requirement that 

the inclusion of quality does not reduce the cost savings too much, we develop a set of weight restrictions. We 

base the weight restrictions on a facet outlier analysis, where we initially assume that all outlying facets have 

unrealistic trade-offs between costs and a quality variable. This will create a harsh model. Hereafter, for this 

method to work properly, we want the companies to reveal their private information about the true trade-offs 

to help us identify which outliers found in the outlier analysis do, in fact, have realistic trade-offs. If we allow 

the initial harsh model to be reestimated (and softened) by incorporating the additional information about true 

trade-offs provided by the companies, they will, according to agency theory, have incentive to disclose their 

private information without reducing the effectiveness of the regulation (too much). 

It is important to note that we mainly focus on the estimation of the frontier. This means that the choice of the 

direction of the projection of the inefficient companies onto the frontier does not influence the results. Only 

after a technology with realistic trade-offs has been estimated does the projection become relevant. 

The rest of this paper is structured as follows: Section 2 describes KFST’s current benchmarking model, the new 

quality data and some changes made to the model. In section 3 we examine the facet structure and discuss 

whether trade-offs are realistic or not. In section 4 we incorporate weight restrictions based on the consumers' 

willingness to pay. In section 5 we discuss how to get the companies to reveal their true trade-offs by removing 

potentially unrealistic trade-offs. In section 6 we examine our method’s impact on the efficiency scores and 

discuss the political agenda. Section 7 concludes the paper. 

2 The current benchmarking model in the Danish water sector 
The current benchmarking model in the Danish (drinking) water sector has been described in Heesche & Asmild 

(2020). In this paper, we only provide a short recap of the most important characteristics of the model 

incorporating the changes suggested by Heesche & Asmild (2020).  

KFST uses both a Data Envelopment analyses (DEA) model (Charnes, Cooper, & Rhodes, 1978) and a stochastic 

frontier analysis (SFA) model (Meeusen & Broeck, 1977, Aigner, Lovell, & Schmidt, 1977) in a so-called "best-of-

two" benchmarking model. This means that KFST uses the highest efficiency score from the two models for 

each company to set the revenue cap. However, in this paper, we only focus on the DEA model. 

The DEA model consists of one input and two outputs. The input is the companies’ total controllable costs 

(hereafter costs) and the outputs are measures for the capacity that the companies make available for their 

consumers. These are aggregations of the total length of water pipes, the quantity of water delivered and the 

number of consumers to be serviced among many other things. The first output is an aggregation of the 

operational costs associated with providing the capacity (OPEX) and the second is the capital costs of the 

capacity (CAPEX). Both outputs are adjusted for the companies’ assets’ average age and the population 

density3 in their supply area. We use the OPEX and CAPEX definitions from Heesche & Asmild (2020) where 

both measures are adjusted for both age and density as well as their interaction. 

The model is input orientated because the regulatory goal is to reduce the companies’ costs. It can also be 

argued that the companies have exactly the output they need, because they have to deliver the water 

                                                           
3 The population density is calculated as the number of consumers divided by the total length of water pipes. 
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requested by the consumers and cannot compete to increase or decrease market shares. KFST assumes 

constant return to scale (crs). There are two arguments for this. First, the aggregation of the outputs already 

take into account different scales through the prices used for the capacity components. Second, if the 

companies are not on the optimal scale size the regulation should provide incentives for them to become so by 

merging/splitting4. 

The data consists of the 74 biggest water companies in Denmark. Following KFST four of these are 

characterized as outliers. For simplicity, we only use the remaining 70 companies in this paper. The outliers do, 

however, not influence the overall conclusions. 

We consider three new variables as indicators of quality: Bacteriological Excesses (BE), Pipe Breaks (PB) and 

Water Wastage (WW). “BE” measures how often the companies exceeds the bacteriological limits set by the 

Danish Environmental Protection Agency. We assume that bigger companies have more BE than smaller 

companies as they have a larger supply area and therefore have more places where things can go wrong. “PB” 

measures how often the consumers are left without water because of some breaks in the system. The breaks 

are measured as downtime for the breaks multiplied with the number of affected consumers. “WW” measures 

how much water the companies waste before it reaches the consumers. “WW” does not directly affect the 

consumers in the short run, but can result in a local shortage of water resources in the long run. All three 

variables are volumes and therefore increase with scale, making it possible to include these variables in a 

model assuming constant returns to scale. 

Intuitively quality should be incorporated as output. Due to the definition of these variables, they will, 

however, be undesirable outputs. Many attempts have been made to incorporate undesirable outputs in DEA 

models, but no one without any disadvantages. For an overview of different methods see, for example, Scheel 

(2001). In this paper, we incorporate the quality variables as inputs. The quality variables should, therefore, be 

thought of as costs necessary to deliver water. In other words, the companies may need to have some 

Bacteriological Excesses, Pipe Breaks and Water Wastage to deliver their water at a reasonable price. Note that 

a high value of a quality variable indicates bad performance, consistent with the inclusion as an input. By high 

quality, we mean good performance, i.e. low values on these input variables. The advantages of incorporating 

quality as inputs are, firstly, that we can easily examine the trade-offs between costs and quality, where we 

expect that high quality, i.e. low values on those inputs are associated with higher costs and vice versa. If one 

value is high we would expect the other to be low. Secondly, most methods to incorporate bad outputs require 

a transformation of the quality variables, for example multiplying them with -1 or subtracting the values from a 

large number. This affects the variance in the variables and therefore their influence on the final results. 

Thirdly, working with negative outputs is problematic when using crs and weight restrictions, which we will do 

later. Lastly, a common method for incorporating undesirable outputs is to assume weak disposability and use 

a directional distance approach. This will make the trade-offs between costs and quality hard to interpret and 

we have, in the current case, no obvious reason for challenging the assumption of free disposability for quality, 

since it is possible to worsen quality without necessarily impacting the other variables. 

                                                           
4 Due to high transporting costs it is not possible for all companies to merge (split) all the companies' activities. It is, 
however, possible to, for example, merge (split) the administration among other things. This is an ongoing debate which 
we will not discuss further in this paper.  
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2.1 Data description 

The DEA model in this paper incorporates the six variables mentioned above. The data is from 2017 and is 

publicly available at KFST’s website5. Note that the data from 2018 and 2019 have only recently become 

available. We will therefore use data from 2019 later as a robustness check. The variable definitions between 

the years are, however, not identical and the data from 2018 and 2019 have yet to be quality assured. The 

variables for 2017 together with a short description are listed in Table 2.1. 

Table 2.1 – Ddescription of input and output variables in the DEA model 

Variable Description Type Measurement unit6 

Costs The companies’ total controllable costs Input 100.000 DKK 

Bacteriological 
Excesses (BE) 

Number of exceedances per m3 of water 
corrected for the number of samples 

Bad output treated 
as an input 

1.000.000 # 

Pipes Breaks (PB) 
The sum of the consumers time without 
availeble water 

Bad output treated 
as an input 

100.000 min. 

Water Wastage 
(WW) 

Amount of water the companies waste 
before it reach the consumers 

Bad output treated 
as an input 

100.000 m3 

OPEX net volume 
An aggregation of the capacity that the 
companies need to supply the consumers 
based on operational standard prices 

Output 100.000 units 

CAPEX net volume 
An aggregation of the capacity that the 
companies need to supply the consumers 
based on capital standard prices 

Output 100.000 units 

 

The summary statistics are shown in Table 2.2. We observe that the 25 % quantile for BE is 0 meaning that a lot 

of the companies do not have a problem with BE 

Table 2.2 – Summary statistics 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Costs 70 126.125 133.769 28.634 57.847 124.883 781.790 

BE 70 1.141 1.440 0.000 0.000 1.669 5.625 

PB 70 2.863 6.267 0.000 0.096 2.650 45.768 

WW 70 1.987 1.685 0.068 0.845 2.586 9.481 

OPEX 70 122.436 117.895 37.289 62.725 135.346 781.261 

CAPEX 70 138.040 129.083 37.555 63.639 154.816 785.278 

 

                                                           
5 www.kfst.dk 
6 We scale all the measurement units for two reasons: First, we want most solvers to be able to handle the program 
without changing their tolerance level for small numbers. Second, it is easier to interpret, analyse and report numbers 
close to one than numbers where the 10’Th decimals are important 
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3 The facet structure 
The frontier in DEA consists of several piecewise linear relationships between the variables called facets. The 

efficiency score for a point inside the frontier measures its distance to one of these facets. If a company is 

located on a facet it may be fully efficient, but it may also exhibit non-radial slack on some variables. The 

relationships, or trade-offs, between variables, are often examined through the dual (multiplier) DEA 

formulation. Here the trade-offs can be seen from the multipliers (weights). However, multipliers are only 

identified for the facets that the inefficient companies are projected on to. There likely exists additional facets 

containing information about the possible trade-offs. Several studies have examined the DEA estimated trade-

offs including Podinovski (2019) and Asmild, Paradi, & Reese (2006) To identify all the existing facets of the 

convex hull of the observations, we use the QHull algorithm (Barber, Dobkin, & Huhdanpaa, 1996), but from 

those only consider the subset of facets indicating the frontier in a CRS model and augmented with facets 

generated by the free disposability assumption in DEA. Petersen & Olesen (2015) offer an algorithm using 

QHull to find all possible facets in CRS and VRS. 

With our 6 variables (1 cost input, 3 quality inputs, 2 outputs) we identify 115 facets generating the CRS 

frontier. Only 12 of these facets are fully dimensional facets meaning that they are defined from observations 

alone and not the free disposability assumption (Olesen & Petersen, 1996). These are also the only facets 

where the slope is different from zero in all dimensions. If the goal is to find some realistic trade-offs between 

the variables these will be the most interesting facets. However, it is not necessarily these facets that most 

companies are projected onto. The normals to the fully dimensional facets, indicating trade-offs between the 

variables, are shown in Table 3.1. For example, the trade-off between costs and BE on the first facet is 
−0.0093

−0.0418
= 0.22. 

Table 3.1 - Normals to the fully dimensional facets. Note that the offsets to the normals are omitted because they are all zero in crs 

 Costs BE PB WW OPEX CAPEX 

Facet 1 -0.0093 -0.0418 -0.0502 -0.9977 0.0132 0.0004 

Facet 2 -0.0457 -0.0855 -0.1084 -0.9885 0.0423 0.0032 

Facet 3 -0.0383 -0.196 -0.0579 -0.9773 0.0398 0.0002 

Facet 4 -0.029 -0.0319 -0.0313 -0.9982 0.0291 0.0012 

Facet 5 -0.0366 -0.0568 -0.0953 -0.9925 0.0367 0.0015 

Facet 6 -0.0409 -0.0369 -0.1113 -0.9915 0.0388 0.0027 

Facet 7 -0.0325 -0.0887 -0.1909 -0.9764 0.0347 0.0017 

Facet 8 -0.0176 -0.1445 -0.3114 -0.9387 0.025 0.0008 

Facet 9 -0.0346 -0.6832 -0.4432 -0.5788 0.0208 0.0125 

Facet 10 -0.0167 -0.1666 -0.3291 -0.929 0.024 0.0011 

Facet 11 -0.0205 -0.497 -0.4611 -0.7346 0.0182 0.0074 

Facet 12 -0.0002 -0.0003 -0.9999 -0.0115 0.0003 0.0001 
 

To ease the interpretation we in Table 3.2. show the trade-offs between costs and the quality variables. The 

results show that the trade-offs vary a lot and that the trade-offs on certain facets are quite extreme. The 
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trade-off between costs and PB is, for example, 4631 times higher on facet 4 than on facet 12. With such big 

differences, it seems inappropriate to use these results to estimate a single value for the trade-off, for example 

by taking the average. We can, however, use the results to say something about the appropriateness of each of 

the facets. If we have partial information about the true trade-offs we can use this to remove some of the 

facets. Even if we do not have any additional information we can argue that the most extreme facets should be 

excluded. We will use this kind of logic later on. 

Table 3.2 - Trade-offs between costs and the quality variables 

 Costs/BE Costs/PB Costs/WW 

Facet 1 0.2225 0.1853 0.0093 

Facet 2 0.5351 0.4221 0.0463 

Facet 3 0.1954 0.6613 0.0392 

Facet 4 0.9099 0.9261 0.029 

Facet 5 0.6449 0.3842 0.0369 

Facet 6 1.1078 0.3676 0.0413 

Facet 7 0.3669 0.1705 0.0333 

Facet 8 0.1219 0.0566 0.0188 

Facet 9 0.0506 0.0781 0.0598 

Facet 10 0.0999 0.0506 0.0179 

Facet 11 0.0413 0.0445 0.0279 

Facet 12 0.5545 0.0002 0.014 
 

When we add the non-fully dimensional facets it is a well-known problem that the trade-offs can be extreme 

and often result in undefined ratios due to at least one dimension having a slope equal to zero. The distribution 

of the trade-offs between costs and the quality variables for all facets are shown in Figure 3.17. The figure 

shows that most facets do not have a well-defined trade-off between costs and quality. The number of poorly 

defined trade-offs are shown in the upper left corner. Zero means that the slope on costs is zero, “Inf” means 

that the slope on quality is zero and “NA” means that both slopes are zero. These trade-offs come as a result of 

the free disposability assumption8. The remaining trade-offs are located in quite large intervals with a few 

extreme points. It is, for example, quite extreme that some trade-offs are more than 37,000 times larger than 

others, as is the case e.g. Costs/BE. In the absence of prior information, it becomes a subjective assessment 

whether such trade-offs are realistic or not. 

                                                           
7 Note that the y-axis is logarithmic because we want to compare the ratios between the trade-offs  
8 A slope of zero can also occur if at least two of the efficient companies that span a certain facet have the same value on a 
quality variable. We observe, for example, several companies with a value of zero on a quality variable  
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Figure 3.1 - Distributions of trade-offs between costs and quality. Note that the zero, Inf and NA values are omitted. The red dots indicate 

trade-offs from a fully dimensional facet. X indicates potential outliers and the y-axes are logarithmic. The horizontal line for 
𝐶𝑜𝑠𝑡𝑠

𝑃𝐵
 

indicate the consumers willingness to pay cf. section 3.1.1.  

3.1 Indications of unrealistic trade-offs 

To remove unrealistic trade-offs we first need to identify them. If we do not have any prior information about 

the range of allowable trade-offs, we do not have any objective criteria for when a trade-off is unrealistic. We, 

therefore, define some subjective criteria that we want to be fulfilled, which practitioners (like a regulator) 

could use to evaluate if a trade-off is realistic or not when they lack prior information or expert opinions. 

3.1.1 Willingness to pay 
KFST do not have any prior information about the trade-offs between costs and quality. They know, however, 

the consumers’ willingness to pay for (avoiding) PB (Konkurrence- og Forbrugerstyrelsen, 2020). This 

information cannot directly be used to identify unrealistic trade-offs but can, however, be used to identify 

trade-offs where the costs associated with improving quality means that these improvements are not in the 

consumers' interest. It can, therefore, be argued that the allowable trade-offs between costs and PB should not 

involve improvements in quality that are more expensive than what the consumers are willing to pay for them. 

The willingness to pay for PB is 6.6 DKK. This means that the trade-off for cost/PB should be around 6.6 if we 

have the consumers’ interest in mind. Figure 3.1 shows that most of the estimated tradeoffs are quite different 
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from this value. This is not surprising because there is not necessarily any relationship between willingness to 

pay and costs in a monopoly. 

3.1.2 Expert opinions 
KFST does not have any prior information about the true trade-offs between costs and quality. It is, however, 

likely that the companies themselves have at least some partial information about these trade-offs. This 

information is not something KFST can find in any existing sources and it is, therefore, necessary to elicit this 

directly from the companies. The companies do, however, not have any incentive to disclose their true trade-

offs if KFST uses this information to remove unrealistic trade-offs which will lower the companies efficiency 

scores. 

If KFST wants the companies to reveal their private information about true tradeoffs, they need a method that 

gives the companies an incentive to do so. This method should not only give appropriate incentives but should 

also be administratively easy to implement for both the companies and KFST. If it is not easy to implement, 

there is a risk that the administrative costs exceed the gain of getting the information. We propose such a 

method in section 5.  

3.1.3 Regression/SFA 
In lack of prior information about the true trade-offs, it would be obvious to estimate these with regression 

analysis or a stochastic frontier analysis (Meeusen & Broeck, 1977, Aigner, Lovell, & Schmidt, 1977). We could, 

for example, compare the DEA trade-offs with the maximum and minimum tradeoffs in these parametric 

models or look at the confidence intervals for the individual coefficients. We have, however, not succeeded in 

getting significant results in our parametric models and can, therefore, not use this method to identify when 

the trade-offs in DEA are unrealistic or not. There can be several reasons why we do not get significant results: 

First, defining a parametric model can be a complicated task. In our case, we want to control for two 

environmental conditions, two net volumes and the three new quality variables (or at least one of the quality 

variables). With only 70 observations this relies heavily on appropirate choices of model specifications and 

parametric assumptions. We have, of course, experimented with several different models, but are for now 

leaving an extensive parametric analysis for further research9. 

Second, intuitively we think that more quality requires higher costs. It might, however, be that the damage 

costs from repairing for example a pipe break are just as high as the costs of proper maintenance. This will 

result in trade-offs (coefficients in the parametric set-up) that are close to zero. 

Third, some companies might be efficient due to superior management, which enable them to outperform 

others with respect to both economic efficiency and quality. Such companies will, therefore, have both lower 

costs and better quality than the inefficient companies, which complicates the estimation of trade-off between 

costs and quality in a parametric model. 

Due to the above problems, we will not use this method to identify unrealistic trade-offs in the present paper. 

                                                           
9 KFST is currently working on exactly this challenge 
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3.1.4 Free disposability 
The number of trade-offs that are zero, Inf or NA in Figure 3.1 is an indication of how well (poorly) the facet 

structure is estimated. If we observe a lot of these non-fully dimensional facets, many trade-offs10 are defined 

based on the assumption of free disposability11 instead of from the observed data. These trade-offs are likely 

unrealistic. We will later show how the proposed method in this paper reduces the number of non-fully 

dimensional facets. 

3.1.5 Outliers 
An, admittedly somewhat subjective, criterion is that it is desirable to have a distribution of trade-offs without 

legible outliers. An outlier in this context is a trade-off that is very different from the rest. An outlier does, of 

course, not necessarily imply an unrealistic trade-off, but it might be worthwhile investigating such trade-offs 

further. We use the adjusted interquartile range method (Hubert & Vandervieren, 2008) to identify potential 

outliers amongst the logarithmic trade-offs. This method has the advantages that it can handle skewed 

distributions and is commonly used. For a review of different outlier-detection models see for example Hodge 

& Austin (2004). We use the logarithmic trade-offs because we define an outlier as a trade-off that is much 

bigger or smaller than the remaining tradeoffs as a ratio rather than in discrete numbers. We, therefore, want 

a trade-off that is twice as high as another but only half the value of a third to lie exactly between these two 

trade-offs. If we did not use the logarithmic trade-offs the middle trade-off would be closer to the lower trade-

off than to the higher trade-off. The outliers identified this way are indicated by the x’s in Figure 3.1, where we 

observe 4 potential outliers among the trade-offs, specifically for the tradeoff between costs and WW. 

  

4 Removal of the unrealistic facets using the consumers' willingness to pay 
In the previous section, we discussed how to identify unrealistic trade-offs. We will now show how one can 

remove such trade-offs by incorporating a weight restriction defined from the consumers’ willingness to pay 

for quality, specifically for avoiding pipe breaks (PB). KFST’s priority is to reduce the companies’ costs. We will, 

therefore, only restrict the trade-offs in the direction where the quality variable is given to much weight. In 

other words, quality should never be given more weight than what the consumers are willing to pay for 

improving it. The multiplier DEA program is given in (1)-(5), where (4) is the weight restriction. 𝑋𝑖 =

[𝐶𝑜𝑠𝑡𝑠𝑖, 𝐵𝐸𝑖 , 𝑃𝐵𝑖, 𝑊𝑊𝑖] and 𝑌𝑖 = [𝑂𝑃𝐸𝑋𝑖 , 𝐶𝐴𝑃𝐸𝑋𝑖] are the input and output vectors for company 𝑖. 𝑣 =

[𝑣𝐶𝑜𝑠𝑡𝑠, 𝑣𝐵𝐸 , 𝑣𝑃𝐵, 𝑣𝑊𝑊] and 𝑢 = [𝑢𝑂𝑃𝐸𝑋, 𝑢𝐶𝐴𝑃𝐸𝑋] are the input and output weights, which are estimated when 

the problem is optimized. The program can easily be modified to assume any of the standard returns to scale 

assumptions. 

 

 

                                                           
10 Note, that we only analyze the facets and not the inefficient companies projection to the facets. By "many" trade-offs 
we, therefore, refer to the number of unique facets and not the number of times a specific trade-off is being used as 
benchmark for an inefficient company. 
11 Or in some cases, due to at least two efficient companies spanning a facet and having the same value on a (quality) 
variable. 
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𝑚𝑎𝑥   𝑢𝑌0    (1) 

𝑠. 𝑡. 𝑣𝑋0 ≤ 1  (2) 

 −𝑣𝑋𝑖 + 𝑢𝑌𝑖 ≤ 0 ∀ 𝑖 ∈ 𝐼 (3) 

 6.6𝑣𝑐𝑜𝑠𝑡𝑠 − 𝑣𝑃𝑒 ≥ 0  (4) 

 𝑣, 𝑢 ≥ 0  (5) 

To incorporate the weight restriction in the QHull algorithm, we add one artificial data point (𝑋′𝑖 , 𝑌′𝑖) per DMU, 

by modifying the costs according to the willingness to pay for reducing PB to zero cf. (6).  

𝑋′𝑖 = [𝐶𝑜𝑠𝑡𝑠𝑖 + 6.6𝑃𝐵𝑖, 𝐵𝐸𝑖 , 0, 𝑊𝑊𝑖], 𝑌′𝑖 = 𝑌𝑖  (6) 

These new data points correspond to each company having traded all their PB to costs at a ratio of 1:6.6. If 

needed, the procedure can be made more time-efficient if we only include artificial data points corresponding 

to the efficient companies. For small data sets like in the present case this is, however, not necessary. The 

QHull algorithm described earlier can now run on the new extended data set. Note that it might be necessary 

to create more extreme artificial data points with values below zero if we have several weight restrictions as is 

the case in section 5. The new data points should have sufficiently low coordinates for every possible convex 

combination between the weight restrictions and the observed data that lies in ℝ+ to be included in the 

technology set. In addition, all facets based on the weight restrictions and which exclusively is located in ℝ− in 

the relevant dimensions are excluded from the analysis. 

When we add the weight restriction (4), we reduce the number of facets to 87 and increase the number of 

fully dimensional facets to 13. The trade-offs on the fully dimensional facets are shown in Table 4.1. We 

observe that 6 of the fully dimensional facets are restricted by the weight restriction. This is evident from the 

trade-off 0.1515 for Cost/PB. 

Table 4.1 - Trade-offs on the fully dimensional facets with weight restrictions based on the consumers’ willingness to pay 

 Cost/BE Cost/PB Cost/WW 

Facet 1 1.1078 0.3676 0.0413 

Facet 2 0.5351 0.4221 0.0463 

Facet 3 0.3669 0.1705 0.0333 

Facet 4 0.6449 0.3842 0.0369 

Facet 5 0.9099 0.9261 0.029 

Facet 6 0.2225 0.1853 0.0093 

Facet 7 0.1954 0.6613 0.0392 

Facet 8 0.0915 0.1515 0.0871 

Facet 9 0.0772 0.1515 0.0825 

Facet 10 0.2876 0.1515 0.0305 

Facet 11 0.3261 0.1515 0.0318 

Facet 12 0.2003 0.1515 0.0099 

Facet 13 0.1079 0.1515 0.0076 
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Figure 4.1 shows the distributions of tradeoffs based on the weight restricted model (i.e. with (4) included). 

The figure illustrates how the weight restriction only restricts the lower values of 
𝐶𝑜𝑠𝑡

𝑃𝐵
. The number of NA and 

zero values have decreased a lot for all trade-offs because the multiplier for costs only can be equal to zero if 

the multiplier for PB is also zero. A single weight restriction between costs and a quality variable therefore 

highly influence the trade-offs between costs and the remaining quality variables as well. 

By adding this weight restriction we have therefore reduced the number of unrealistic trade-offs discussed in 

section 3.1.4 and at the same time, we give the companies incentive to not spend more money on PB 

improvements than what the consumers are willing to pay. We observe, however, still several tradeoffs that 

according to the discussion in section 3.1.4 and 3.1.5 potentially are unrealistic. We will, therefore, in the 

following incorporate the outlier-based approach to removing potentially unrealistic trade-offs, with the 

underlying premise that the companies then have incentives to disclose private information about the true 

tradeoffs which might subsequently reintroduce some of these facets (tradeoffs). 

 

  

Figure 4.1 - Distributions of trade-offs between costs and quality. Note that the zero, Inf and NA values are omitted. The red dots indicate 
trade-offs from a fully dimensional facet. X indicates potential outliers and the y-axis is logarithmic 
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5 Removal of the unrealistic facets using expert opinions and outlier 

detection 
We want to provide incentives for the companies to disclose their true trade-offs. Therefore, we propose to 

develop an initially harsh model but with a possibility for the companies to apply for the use of a more 

accommodating model, subject to providing additional information about their true tradeoff that can be 

included in the model. In this way, the companies have an incentive to reveal their private information about 

their true trade-offs, because it can potentially give them a higher efficiency score. 

5.1 Simplified case 

To illustrate the idea we first simplify the model such that WW is the only quality variable, and the OPEX net 

volume and CAPEX net volume are aggregated (added) into one single TOTEX net volume. By doing this we can 

graphically illustrate the differences in the facet structure before and after removing the unrealistic facets. 

Lastly, we for now assume variable return to scale to increase the number of facets in the 3D illustration to 

make it more interesting. Figure 5.1 shows the facet structure with all the facets. The red dots indicate the 

observations12 and the blue dots show which of these are fully efficient. The green facets are the ones with the 

highest or undefined 
𝐶𝑜𝑠𝑡𝑠

𝑊𝑊
. According to the method explained in section 3.1.5 these are the ones that are 

outliers in the distribution. The orange facet has the fourth highest well-defined 
𝐶𝑜𝑠𝑡𝑠

𝑊𝑤
 . There are 12 fully 

dimensional facets and 23 facets in total. 

                                                           
12 In order to zoom in on the lower, interesting, part of the frontier, the figure is trimmed such that a few inefficient 
observations are not shown 
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Figure 5.1 – Facet structure with two inputs (Costs and WW), one output (TOTEX) and variable return to scale 

The green facets all have very high values for the tradeoff between Costs and WW, meaning that a company on 

these facets can increase WW without changing Costs, and still be close to the facet. And since these tradeoffs 

are classified as outliers according to section 3.1.5 we remove them by adding a weight restriction limiting the 

trade-offs between Costs and WW to be smaller than or equal to the trade-off given by the orange facet. This 

removes the green facets, fully-dimensional or not, through the introduction of 4 new facets generated by the 

weight restrictions as shown in Figure 5.2. 
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Figure 5.2 - Facet structure with two inputs, one output, variable return to scale and weight restrictions indicated by the red facets 

Figure 5.2 shows how the weight restrictions extend the technology from the green area in Figure 5.1 to the 

red area. The number of facets based on the assumption of free disposability on WW (zero multiplier on WW) 

is now reduced to one and is pushed further away from origo (it starts at 𝑊𝑊 = 2,5). The part of the 

technology with zero multiplier on WW is therefore reduced and the part with a realistic trade-off between 

Costs and WW have increased substantially. The orange and grey parts of the frontier are not influenced by the 

weight restriction and therefore stay the same. Note that company 1 and 2 are no longer fully efficient even 

though they might still be visible behind the red facets. 
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The comparison between the two figures above illustrates how a weight restriction can reduce the zero-

multiplier problem in a given dimension without compromising the well-behaved estimated grey part of the 

frontier. 

From a regulator’s point of view, it is desirable to have a formalized mechanical approach to incorporating 

weight restrictions. We, therefore, propose to deem all tradeoffs classified as outliers as being unrealistic and 

remove them using the weight restrictions. This will still likely create a harsh model with low efficiency scores. 

The companies can hereafter apply for some of the removed trade-offs being allowed again. Their application 

will likely be administratively cumbersome, as they have to justify why the tradeoffs are appropriate, but 

ideally, it will only be relevant for a few companies and they can evaluate in advance if it will be worth it. 

As discussed in section 3.1.5, there are many different methods for outlier detection. The methods that find 

most outliers will give the companies the strongest incentives to disclose private information but will also be 

the ones with the highest administrative costs. We here propose to use the adjusted interquartile range 

method as described in section 3.1.5. This method has the advantages that it can handle skewed distributions 

and is commonly used. We furthermore use an iterative process, where one outlier at a time is removed, and 

the model then reestimated. In each iteration, the outlier furthest from the whiskers in the adjusted Box plot is 

removed. Other approaches can be used as well for achieving the same overall purpose.  

We remove the outliers by adding a weight restriction which constrains the tradeoffs to be no higher (lower) 

than the second highest (lowest) tradeoff in the relevant dimension. By doing this, the weight restrictions will 

expand the technology set more and more for each iteration until there are no longer any outliers left. 

5.2 Full case 

For a proper empirical illustration of the approach, consider again the full data set with all three quality 

variables and the two separate outputs, and assuming CRS. The iterations start with the model described in 

(1)-(5), with the corresponding tradeoffs illustrated in Figure 4.1. This model has, compared to the model in 

section 4, reduced the number of outliers for Costs/PB to zero but have, however, increased the number of 

outliers for some of the remaining trade-offs.  

The iterative outlier deletion method uses 9 iterations before there are no outliers left. Note that 9 iterations 

does not mean that the method finds 9 outliers. We do not necessarily remove an outlier for every iteration 

because the weight restriction only restricts the trade-offs to the second-highest (lowest) trade-offs, which also 

may be identified as an outlier. At the same time, it is, however, possible for a single iteration to remove 

several outliers because it influences the entire facet which consists of several trade-offs that each can be an 

outlier. The weight restrictions developed from each iteration are given in Table 5.1. To implement the weight 

restrictions in a dual DEA program we add the constraints 

𝑃𝑗
𝑇𝑣 ≥ 0,  ∀ 𝑗 

 

to the program (1)-(5) where 𝑃𝑗 is a vector corresponding to row 𝑗 in Table 5.1. We observe, as expected, that 

the weight restrictions get more and more strict for every iteration. Note that the outliers can either be 
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extreme because they are too high or too low. If the weight restriction for a given iteration is -1 for Costs it 

means that the outlier is too high and the weight restriction, therefore, forces the trade-off 
𝐶𝑜𝑠𝑡𝑠

𝑄𝑢𝑎𝑙𝑖𝑡𝑦
 to be lower 

and vice visa. Iteration 1 forces for example 
𝐶𝑜𝑠𝑡𝑠

𝑊𝑊
≤ 0.7136 and iteration 2 forces 

𝐶𝑜𝑠𝑡𝑠

𝑊𝑊
≥

1

247.9966
. 

Table 5.1 – Weight restrictions based on willingness to pay and hereafter an iterative outlier detection 

 Costs BE PB WW 

Iteration 0 6.6 0 -1 0 

Iteration 1 -1 0 0 0.7136 

Iteration 2 247.9963 0 0 -1 

Iteration 3 286.5374 -1 0 0 

Iteration 4 153.6905 -1 0 0 

Iteration 5 -1 0.9099 0 0 

Iteration 6 -1 0 0 0.3973 

Iteration 7 -1 0 0 0.2535 

Iteration 8 -1 0 0 0.1523 

Iteration 9 -1 0 0 0.1384 
 

Adding these weight restrictions results in the trade-offs given in Figure 5.3. Due to weight restrictions most of 

the undefined trade-offs (non-fully dimensional facets) have been eliminated. The number of fully dimensional 

facets is now 29 and the total number of facets is 91. The non-fully dimensional facets are still present because 

we do not have any weight restrictions for the outputs, and we have facets along the axes which are based on 

free disposability rather than weight restrictions. We observe that approximately half of the trade-offs are 

restricted by weight restrictions while the remaining facets had well-behaved trade-offs to begin with. If the 

companies have information about true trade-offs and therefore can argue to remove some of the weight 

restrictions used to limit the allowable tradeoffs, the number of trade-offs eliminated through weight 

restrictions will, likely, be reduced. The number of trade-offs influenced by the weight restrictions here might 

seem a bit excessive. This is, however, intended as this method aims to provide incentives for the companies to 

reveal their true trade-offs. At the same time, however, we note that the ratio between the highest and lowest 

trade-off for 
𝐶𝑜𝑠𝑡𝑠

𝐵𝐸
, 

𝐶𝑜𝑠𝑡𝑠

𝑃𝐵
 and 

𝐶𝑜𝑠𝑡𝑠

𝑊𝑊
 are 140, 10 and 34 respectively. The method does, therefore, still allow a lot 

of flexibility in the DEA model when calculating trade-offs, which is arguably one of the strengths of DEA. The 

range of estimated tradeoffs has, however, decreased substantially for all three quality variables. 

We note that the method described above results in approximately the same range and distribution of the 

trade-offs if we use data from 2019 instead of 2017, cf. Appendix A.  

In section 6 we show that even though this final model might seem harsh, it can be argued that it fulfils the 

political desire to implement quality in the model without compromising the efficiency requirement for the 

companies’ costs.  
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Figure 5.3 - Distributions of trade-offs between costs and quality. Note that the zero, Inf and NA values are omitted. The red dots indicate 
trade-offs from a fully dimensional facet and the y-axis is logarithmic 

5.3 Example of argumentation for true trade-offs 

Assume that a company wants to argue against an imposed weight restriction on WW. This scenario is fictional 

but the idea is based on interviews with a few companies. The company has recently maintained several km of 

pipes because their WW was too high in this area. The company can document the costs for this maintenance 

which, for simplicity, have not improved the pipes in any other way; this means that all the costs can be directly 

compared to the reduction in WW. The company has used 100,000 DKK on the maintenance and have 

subsequently reduced their WW with what corresponds to 20,000 m3 yearly right after this maintenance. 

The company has, therefore, documented that if they did not use the 100,000 DKK their WW would have been 

20,000 m3 higher. This corresponds to the company trading 1 DKK for 0.2 m3 WW, which means that the last 

two iterations in Table 5.1 probably are too harsh. In the company’s documentation, they do of course not take 

into account their own inefficiency and that they probably extend the pipes life span among other things. It is, 

however, still a good indication that the trade-offs removed in the last iterations are realistic and, therefore, 

should be allowed back in the model 

 



19 
 

5.4 theoretical implications 

While the reasoning for removing outlier trade-offs (facets) should be clear by now, the theoretical implications 

can be discussed. In the dual DEA formulation, it seems reasonable to add weight restrictions due to unrealistic 

trade-offs – we simply remove these trade-offs. In the primal space, however, the inclusion of weight 

restrictions leads to new artificial points in the technology. These artificial points occur due to the assumption 

that it is now possible to substitute one input in favour of another, exclusively based on the ratio given in the 

weight restriction and not based on the observed data set. This method, therefore, differs from other DEA 

outlier methods because points are, in effect, added in order to remove outlier trade-offs instead of simply 

removing outlying data. 

The proposed outlier model is, however, enticing because it does not require any prior information about the 

trade-offs and thereby exclusively is based on the observed data. At the same timeit has the disadvantage that 

DEA becomes less conservative by allowing non-observed data points in the technology.  

6 Changes in efficiency scores 
As mentioned earlier, there is a political desire to incorporate quality but without compromising the efficiency 

requirement for the companies costs. In this section, we use a standard radial DEA model based on the facets 

found in section 5 to assess, if this model could be suitable for KFST. Note that any other distance functions 

could be implemented as well, because we have ensured that every facet is realistic. The projection to these 

facets should, therefore, also be realistic no matter the choice of direction. For simplicity, we here only use the 

radial DEA model. It will obviously be relevant for KFST to explore additional directions and especially the one 

where only costs are discretionary. Figure 6.1 shows the companies efficiency scores in three different models. 

The dots show the efficiency scores in a model without quality. The upper bar shows the efficiency scores in a 

model with quality but without any weight restrictions and the lower bar incorporate all the weight restrictions 

discussed in this paper.  

The figure shows that most companies’ efficiency scores increase a lot when we go from a model without 

quality to the model with quality but without any weight restrictions. This is expected, given the inclusion of 

three additional variables, yet not consistent with the political agenda. When we add the weight restrictions, 

first for the willingness to pay and hereafter for the outliers, most efficiency scores get closer to the initial 

model without quality. The inclusion of the three quality variable does, however, still increase the efficiency 

scores a lot for several companies, even with the weight restrictions, which means that the model may not be 

harsh enough from a political point of view, as the intention was not to reward companies for quality (in terms 

of lower reduction requirements on costs) but mainly to punish, or at least not provide incentives for moving 

towards, poor quality.  

However, for some companies, the efficiency scores are lower in the model with quality and weight restrictions 

than in the model without quality. This seems to go against the standard DEA ideology giving companies the 

benefit of the doubt such that the inclusion of more variables will never decrease the efficiency scores. From 

this point of view, the model may seem too harsh. If KFST chooses to only use the weight restriction from the 

willingness to pay, this problem does not occur for any of the companies. Another solution for this potential 

problem could, for example, be to use a so-called “best-of” model, where we use the highest individual 

efficiency score for the model without quality and the model with quality and all the weight restrictions. The 
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use of “best-of” models is often used in regulations and it is therefore likely, that such a model can be accepted 

for both KFST and the sector. 

The mean efficiency scores in the model without quality is 0.06 lower than the mean in the model with all 

weight restrictions. If we compare the companies’ revenue caps in the two models, the proposed model with 

weight restrictions will increase the average revenue cap with 9.19 %. This means, that the consumers’ water 

expenses will increase by the same 9.19 % assuming that the companies charge the maximum of what they are  

allowed and do not change behaviour in other ways. However, the companies will now get an incentive to 

preserve high quality and are, therefore, expected to change behaviour. This will likely improve the quality in 

the sector and it is beyond the scope of this paper to assess if the price of achieving this is too high. 

 

Figure 6.1 – Changes in the efficiency scores 

7 Conclusion 
The benchmarking model currently used to regulate the Danish water companies is likely to suffer from an 

omitted variable bias due to not considering the quality of the provision. Including the proposed quality 

variables is, however, not a trivial undertaking mainly due to two issues. First, the political agenda is that the 

quality variables should not reduce the cost-efficiency requirements too much. Second, the regulator lacks 

prior information about the relationship between the quality variables and the remaining input and outputs. 

This reduces the regulator's options to include the quality without compromising the cost-efficiency 

requirements to much. 
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We proposed to analyze the facet structure using Qhull to gain valuable information about the estimated 

trade-offs between quality and costs. We used this information in an outlier analysis. The outliers were later 

used to expand the technology using weight restrictions and thereby reduce the influence that quality had on 

the efficiency scores.  

In addition, we showed how the incorporation of the customers' willingness to pay in the form of a single 

weight restriction improved the facet structure in several dimensions and forced the model to not assign more 

weight to quality than the customers are willing to pay. 

We proposed to allow the companies to apply to reintroduce some of the tradeoffs, i.e. remove some of the 

weight restrictions eliminating outliers, if they can argue and documents that the trade-offs are in fact realistic. 

This gives the companies an incentive to disclose their private information about their true trade-offs without 

having an administratively cumbersome regulation. 

Lastly, we argued that one of the advantages of analyzing and specifying the facet structure independently 

from the efficiency measurement is that any direction of projection onto the frontier can be used on this 

technology without risking getting unrealistic trade-offs. Multiple efficiency measures can therefore be 

compared in the same technology. 

For further research we suggest to use a multi-dimensional outlier detection method. For the iterative trade-

off outlier detection approach proposed in this paper, we have used a single-dimensional outlier method - the 

adjusted interquartile range. This method is simple and commonly used, making it an obvious candidate for our 

proposed idea, where outlier trade-offs are removed in order to subsequently get the companies to reveal 

private information about their true trade-offs. It is, of course, trivial to instead use another single-dimensional 

outlier method to identify the outliers and still use weight restriction to remove them (iteratively or not, and in 

some pre-specified order). 

It is, however, more complicated to use multi-dimensional outlier detection methods, but we might need to 

then look for outlier facets rather than outlier trade-offs. To remove an outlier facet we could extend another 

similar facet using, for example, the k-means algorithm to identify similar facets (Hartigan & Wong, 1979). 
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A. Appendix - Robustness 
We have shown that our proposed method reduces the trade-off intervals and reduce the large increase in the 

efficiency scores from the addition of the quality variables. As a robustness check, the method has been 

applied to data from 2019. Note, however, that a direct comparison between the years is problematic due to 

differences in the definition of the variables between the years and the lack of quality check of the data from 

2019. Especially the results for BE should not be compared directly due to a radical new definition of 

Bacteriological Excesses..  

If we compare Figure 5.3 and Figure 8.1, we first observe that the number of trade-offs for Costs/BE has been 

reduced a lot. This is because most companies have zero BE with the new definition and its influence on the 

final results have, therefore, decreased.  

Second, we observe that the lower bound of the weight restriction for 
𝐶𝑜𝑠𝑡𝑠

𝑃𝐵
 is the same because we have used 

the same willingness to pay in the two years. The upper bound is almost the same, but have occurred naturally 

in the first year and with a weight restriction in the second. This indicates that the high trade-offs in the second 

year were in fact outliers. 

Lastly, we observe that the interval for the trade-offs between costs and WW are also almost the same for the 

two years. The interval is, however, a bit larger in the second year where there is no weight restriction on the 

lower bound. That the lower trade-offs yet are similar could again indicate that the outliers found in the first 

year are in fact outliers.  
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Figure 8.1 - Distributions of trade-offs between costs and quality in a new data set. Note that the zero, Inf and NA values are omitted. 
The red dots indicate trade-offs from a fully dimensional facet and the y-axis is logarithmic 
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