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Abstract 
The application of ecosystem based management of the marine resources and focus on 
ecosystem services will influence the methodologies used for assessing the resources as well as 
the proposed regulation of the fisheries and other marine resources. The paper makes a review 
of ecosystem services and ecosystem based fishery management with the purpose of integrating 
these elements in a bioeconomic model. As a part of the model development, a logistic predator-
prey model is examined thoroughly. On this basis, a numerical model is created. The model can 
include several species at different tropic layers, hence simulation a small food web. The key 
purpose of the numerical analysis is to develop a practical tool that can assess the management 
policies when a broader range of ecosystem services, species interactions and externalities are 
taken into account. The model can include several species at different trophic layers and, hence, 
simulate a small food web, while at the same time assess the economic effects of fishing on this 
food web. In general, the analyses indicate that species modelled with interaction may sustain 
less fishing pressure than if they are modelled without species interaction. Besides interaction, 
the numerical model assesses how the economic result is affected by the inclusion of ecosystem 
services. This is done through the damage cost functions, which depends on effort and reduces 
the net value, and a set of non-market values, which are functions that depend on the stock of 
the species. The inclusion of these tends to favour reduction in effort levels, in some cases quite 
significantly. Management policies based on conventional MEY targets may in many cases 
rather well accommodate the broader range of ecosystem-based policy goals, due to the lower 
effort levels. The paper shows the shortcomings of conventional qualitative analytical 
approaches because of the complexities of marine ecosystems. Numerical models also show 
shortcomings, in particular because specific functional forms are used and data are short in 
many areas. However, it is shown that much insight can be gained from using such relatively 
simple models. 
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1. Introduction  
The application of ecosystem-based management and focus on ecosystem services will 
influence the methodologies used for assessing the resources as well as the proposed regulation 
of the fisheries and other marine resources. Historically, bio-economic theory has mainly 
focused on single species models. Objectives have typically been oriented towards the 
maximization of the resource rent or net present value from a single species fishery exploited 
by a homogeneous fleet. In static analyses, focus is on the Maximum Economic Yield (MEY) 
whereas biologically oriented work mainly has Maximum Sustainable Yield (MSY) as a 
guiding principle. Assuming that the yield from a natural stock can be described by a logistic 
function and the costs of effort are linear, it is straightforward to determine single species MEY 
or MSY and, hence, produce simple management advice. However, this advice might be 
unsuitable if species interactions, broader ecosystem goals and fisheries impact on the 
ecosystem are taken into consideration. For example, research has indicated that the amount of 
effort related to MSY-targets can be too high in order to fulfil ecosystem goal, because the 
corresponding fishing pressure might be too high for some species and put them at risk of 
extinction (Legovic and Gecek 2010, Legovic et al. 2010). More complex models including for 
example two species have been known since Lotka-Volterra (1925, 1928), but such apparently 
small extensions complicate the analyses immensely (Clark 1990, 2010). 

The growing interest in ecosystem analyses has been materialized in particular by the 
Millennium Ecosystem Assessment (MEA 2005). MEA divides the ecosystem services into 
four main categories; provisioning, regulating, cultural and supporting services. Ecosystem 
services, the contribution of ecosystems to human welfare, are more recently divided in three 
main categories whilst considering the supporting services as ecosystem processes rather than 
ecosystem services (CICES 2013, United Nations et al. 2013, Haines-Young and Potschin 
2013). The demand for ecosystem services is based on the sum of people's willingness to pay 
for both services related to the marketable and non-marketable benefits (Pearce 2007, Fisher et 
al. 2008). A number of different valuation methods can be utilised to estimate the value of 
ecosystem services (Bateman et al. 2011, Bertram and Rehdanz 2013, Barbier 2007, 
Remoundou et al. 2009, Holland et al. 2010). However, the joint character of the production of 
ecosystem services can complicate the estimation (Freeman 2003).  

The focus of ecosystem-based fishery management (EBFM) is to avoid degradation of 
ecosystems and to consider requirements of non-target species, protected species and habitats, 
to take trophic interactions into account and cover the effects of environmental influences 
(Pikitch et al. 2004, Fogarty 2014, Arkema et al. 2006). For example, conventional single-
species approaches to the modelling of fish stocks are likely to conclude that marine mammals 
are detrimental to stocks, as they cannot take account of the range of indirect and more complex 
interactions (Morissette et al. 2012). Ecosystem-based management will require knowledge 
about the relationship between stocks of different species. These interconnections influence the 
ecosystem services and, subsequently, these services can be assessed economically. When 
looking at changes in fisheries policies after inclusion of more ecosystem services, the trade-
offs are about the balancing of forgone revenues from fishing in the short term with the long 
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term benefits from reduced fishing activity of a modified policy (Smith et al. 2010). If human 
activities alter the state of the ecosystem and the future flow of ecosystem services and if 
economic agents who receive the altered flows are not compensated, there is an ecosystem 
externality, which leads to inefficiencies (Tschirhart 2009, Crocker and Tschirhart 1992). 

Bioeconomic models are useful for valuation of ecosystem services, because they can include 
the positive or negative effects on the economic yield of changing environmental factors (Smith 
and Crowder 2011). In addition, ecosystem services are often produced through a combination 
of different inputs, labour, capital and ecosystems. Kellner et al. (2011) present an example of 
model that includes: provisioning, such as catch of fish, regulating services consisting of habitat 
maintenance (e.g. Parrot fish contribute to coral regeneration by feeding on small macrophytes 
which compete with the corrals), and cultural services i.e. non-extractive recreational activities. 
Ecosystem models such as Ecopath with Ecosim (Christensen and Walters, 2004) and Atlantis 
(Fulton 2010) have been developed aiming at modelling the entire ecosystem. These ecological 
models, however, are not constructed for assessing all economic values produced by the 
ecosystem (Lassen et al 2013).  

The impact of fishing on the marine ecosystems takes the form of direct damage and indirect 
effects via the food web. Some of the indirect effects can be modelled by including species 
interaction. With respect to the direct damage, it occurs through a number of effects; mortality 
of non-target fish species, seabirds and mammals, discards, damaging epifauna, smoothing and 
suspending of sediments, reducing seabed roughness, removing species that produce structure, 
damaging reefs, kelp and sea grass (Hilborn 2011, Auster and Langton 1999). These effects 
reduce diversity and non-market values and may damage productivity of stocks and thereby 
damage future fishing. Research regarding the physical effects of different gear types on 
different habitats has been carried out (Armstrong and Falk-Petersen 2008, Auster 1998). 
However, the extent to which the fishing sector causes externalities upon its own activities by 
reducing future catches through the habitat-fisheries interactions is not well known (Armstrong 
and Falk-Petersen 2008).  

The indirect damage could be modelled as changes in intrinsic growth rate or carrying capacity. 
Ryan et al. (2014) examine fishing activities that affect the underlying biological productivity. 
These ecosystem externalities may be positive as well as negative. Fishing may damage habitat 
in ways that reduce productivity, however, in some cases it may also increase food availability, 
hence, increasing productivity of the target species. A simple model set up by Ryan et al. (2014) 
incorporates stock and crowding externalities as well as ecosystem externalities, and the effects 
on system dynamics, open-access equilibria, and optimal fishery regulation are outlined. The 
effect of ecosystem externalities on the harvest is modelled via the stock growth. An alternative 
way of including ecosystem externalities is to uses habitat as an additional state variable in a 
fishery where fishing effort causes habitat damage, which in turn affects fishery productivity 
negatively (Janmaat 2012). 

The central research question in the present paper is to what extend conventional management 
policies based on the concepts of MEY and MSY are useful when a broader range of ecosystem 
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services are taken into account and to provide guidance on what the potential adjustments could 
be. In order to analyse the effects of species interaction on ecosystem services, the work 
presented here first examines a simple predator-prey model subject to fishing. Given this basis, 
an additional species such as a top predator or a forage species as well as other ecosystem 
service elements are successively added, i.e. externalities and non-market values. The aim of 
the paper is to set up a model that through application of numerical methods can explore the 
effects of different types of species interaction and fleet compositions when externalities and 
non-market values are added, and hence provide appropriate and operational management 
advice given that ecosystem interactions and services are taken into account. 

 

2. The model 
The application of models that capture a wider range of ecosystem services in management of 
marine areas, other than those related only to commercial activities, is non-trivial. Ecosystem 
services that provide non-market values must be included, trade-offs must be made between 
different ecosystem services, and externalities from human activities must be taken into 
account. The following model optimises, economically, a multiple species and multiple fleet 
fisheries including both market and non-market values as in Kellner et al. (2011) and 
Johannesen and Skonhoft (2005). It includes negative externalities from the fishing activities 
in the form of a damage function. It maximizes the net present social value, S, of a flow of both 
market and non-market ecosystem services by choosing the fishing effort in each period. Details 
of the model are given in Appendix A.  

𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆 = max
𝑒𝑒𝑒𝑒(𝑡𝑡)

∫ 𝑒𝑒−𝛿𝛿𝛿𝛿∞
0 [∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡), 𝑥𝑥𝑖𝑖(𝑡𝑡)) − 𝑑𝑑𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡)) + 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡))𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 ] 𝑑𝑑𝑑𝑑              (1) 

s.t. dxi/dt = gi(xi) - hij(ej, xi)  

where πij(ej (t ), xi(t)) is the profit (or resource rent) from fish species i for fleet j, dij(ej(t)) are 
externalities affecting species i from the fishing activities of fleet j. ej(t) corresponds to the 
fishing effort of fleet j in a mixed fishery and xi(t) is the stock of the i’th species. vi(xi(t)) is the 
net values of a stream of non-fishing ecosystem services obtained from species i. The net value 
may consist of gross value of ecosystem services and a cost related to maintaining a stock of 
the species. gi(x) is the growth function for species i, and x is a vector comprising all n species 
included in the model, (x1, x2, …, xn), such that species interaction is taken into account through 
the growth function. hij(ej, xi) is the harvested biomass of species i for fleet j. t is time, and δ is 
the social discount rate whereas n and m represent the number of species and the number of 
fleets, respectively. 

Provisioning services are covered by the profit function (π) with a related cost function. The 
regulating and cultural services are expressed in the value function (v). The benefits of these 
services are expected to increase with the stock of the species related to the services, but at a 
decreasing rate. The costs of these services are captured in the profit function π as forgone profit 
and increased costs (e.g. marine mammals that consume a fraction of the potential harvest) or 
as direct damage on catch and gear, which can be modelled as a damage function dependent on 
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the size of the stock of the particular species and deducted from the value function. The net 
value per species can be negative for some species, e.g. invasive species. Costs related to the 
regulating and cultural services can be taken into account in the value function v. The 
externalities created by human activities are included in the damage function (d). By-catch of 
marine mammals for example can be taken into account when estimating 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡). In the 
present case, damage is modelled in a steady state without any time lag and regarded as 
temporary and not permanent. The externalities can also be positive, e.g. activity in fishing 
communities. Interaction between species is mediated through the stock function (x) and this 
interaction can have several expressions such as predator-prey and competition between 
species.  

Analytical methods have limitations as compared to numerical methods when models become 
complex as the above. Even the two-species predator-prey model becomes very complex, and 
is not possible to derive full analytic dynamic solutions for more complex predator-prey 
systems (Kellner et al. 2011). Based on Clark (1990) it can be shown that a simple version of 
the model consisting of two interacting species and one fleet, one externality and one non-
market value, cannot be determined analytically (Appendix A).  

Therefore, numerical models must be applied in these more complex situations. However, 
numerical models require both specific functional forms and parameter inputs. In that respect, 
numerical models are subsets of general analytical models. One way to overcome the limitations 
of numerical models is to conduct sensitivity analyses with respect to both functional forms and 
data input. As the output of such exercises is extremely comprehensive, it is important to limit 
the sensitivity analyses to comprise only the most sensitive cases.  In particular fishermen’s 
behaviour, the growth functions of the fish stocks, the interaction between stock and the damage 
on or the benefit to the ecosystem are cases of interest. Frost et al. (2013) show how the 
application of numerical models can handle very complex and more realistic settings compared 
to simpler analytical models, including both a number of biological and technical conditions as 
well as fishermen’s behavioural response to different policy measures, and hence provide a 
deeper insight into and better foundation for management recommendations. 

The state equations of the model, dxi/dt = gi(x,) - hij(ej, xi) may take many possible forms and 
need to be specified. The growth function gi(x) includes growth as well as mortalities due to 
predation and remaining natural mortality. For a thorough analysis of species interaction and 
ecosystem services linked to the species diversity, the species interaction needs to be more 
explicit and take into account species interconnections such as predator-prey relationships. 

Models with different types of predator’s functional responses must be considered for a realistic 
species interaction (Berryman 1992, Yodzis 1994). Ratio-dependent predation – in which the 
functional response of the predators depends on the ratio of prey to predators instead of the prey 
density – has been proposed as a more realistic feature (Arditi and Ginzburg 1989; Berryman 
et al. 1995a). It builds on the law of diminishing returns, which manifests itself as an increasing 
difficulty for a predator to meet its energy demands as its population density increases compared 
to the prey. On this background, Berryman et al. (1995b) extended the logistic predator-prey 
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model to apply to any population in a food web of arbitrary complexity such that each species 
potentially can interact with any other species. The model defers from the conventional 
predator-prey models, because it does not conform strictly to the laws of mass conservation, 
which in conventional models mean that prey consumed is converted into predator growth at a 
certain rate. The starting point is per-capita growth rate from which is subtracted a number of 
terms that causes reduction of the intrinsic growth rate such as predation and competition for 
food and other resources. Hence, according to Berryman et al. (1995b), the general food web 
equation for the stock 𝑥𝑥𝑖𝑖 of species i can be given by: 
1
𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

 = 𝑎𝑎𝑖𝑖 −  𝑏𝑏𝑖𝑖 𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖
∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗

− ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑘𝑘
𝑥𝑥𝑖𝑖

     (2) 

Where 𝑥𝑥𝑗𝑗 are the stocks of species j that  𝑥𝑥𝑖𝑖 consumes, whereas 𝑥𝑥𝑘𝑘 are the stocks of species k 
that prey on 𝑥𝑥𝑖𝑖.  

For simplicity in the following analysis, the multispecies model is reduced to a two species 
predator-prey model. In the numerical application, however, more species can be added. 
Assuming a simplified food chain with only one predator eating one prey, in the following 
denoted x for the prey and y for the predator and including the fishing mortality Fi(hij(ej, xi)) we 
get the following equations. In the following subscript x and y are used to refer to prey and 
predator, respectively. 

    (3) 

And 

    (4) 

Or in re-written form: 

    (5) 

    (6) 

This predator-prey model is analysed in order to determine the existence of equilibriums and 
characterise the different types of potential equilibrium points (Appendix B). This is carried out 
because it is of particular interest under what conditions the two species are able to form stable 
equilibriums when fishing mortality is added.  

Analytical solutions of bio-economic models as the ones discussed above are only possible in 
the simpler cases. To form the numerical version of the model, the Euler method is applied, in 
brief: 

x
x

xx F
x

ydxba
dt
dx

x
−

⋅
−⋅−=

1

y
y

yy F
xc

yyba
dt
dy

y
−

⋅
−⋅−=

1

xFydxbax
dt
dx

xxxx ⋅−⋅−⋅−= )(

yF
xc

y
ybay

dt
dy

y
y

yy ⋅−
⋅

−⋅−=
2

)(



6 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = f(x)≈ ∆𝑥𝑥
∆𝑡𝑡

, then the discrete version is: 

∆𝑥𝑥
∆𝑡𝑡

 = 𝑥𝑥𝑘𝑘+1−𝑥𝑥𝑘𝑘
∆𝑡𝑡

 this gives 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + ∆𝑡𝑡 ∙ f(x) 

Where x corresponds to one of the species, ∆𝑡𝑡 is the time interval (here one year), k is a specific 
time (year) so that 𝑡𝑡𝑘𝑘 = ∆𝑡𝑡 ∙k.  f(x) is the state equation; growth minus harvest. In addition, the 
model needs an initial value, 𝑥𝑥0. 

The numerical model is constructed using equations (5) and (6). Two commercial species are 
included: a prey species and a predator. With respect to fishing, the model contains two different 
fleets of which one only catches the predator and the other catches a combination of prey and 
predator in a fixed proportion defined by the fishing gear. Fleet 1 represents a segment that uses 
passive gear types, such as net, hook or lines, whereas fleet 2 is assumed to use trawling 
equipment. Prices are different between species and fleet segments, but assumed to be fixed. 
Costs are modelled as a linear function of effort because the fishing industry is small relative 
to other sectors and, therefore, not able to impact input prices. The model is presented in details 
in Appendix C, and parameters as well as data used for estimation of model parameters are 
presented in section 3. A third species may be added optionally to the model either as a top 
predator at a higher trophic level that feeds on both of the other species or as a forage species 
at a lower trophic level that serves as feed for both the prey species and the predator. The 
inclusion of these species provides a more complex and perhaps a more realistic system and 
may facilitate the modelling of more ecosystem services, including the supporting services 
underpinning the predator-prey system. Interactions between the predator and prey species can 
be turned on and off in the model, making it possible to compare the case of no species 
interaction with the case where species interaction is assumed. 

The model also have the facility to include the externalities or the damage function, dij(ej), one 
for each of the fleets and non-market values vi(xi) corresponding to each of the 3 species. For 
simplicity, it is assumed in the present context that damage is only dependent of fleets j. 
Furthermore, it is assumed that the damage function has the functional form 𝑑𝑑𝑖𝑖𝑖𝑖�𝑒𝑒𝑗𝑗� =  𝑘𝑘 ∙
𝑒𝑒𝑗𝑗(𝑡𝑡)𝑙𝑙, where k and l are constants, 𝑘𝑘 > 0, l ≥ 1, and it is assumed that it can be linear or convex. 
Positive externalities (e.g. activities in coastal towns) may occur from effort in some settings, 
but are not considered here. Low damage cost scenarios will probably not affect the potential 
decisions to a significant degree, unless it is accumulated over time, if it is of permanent 
character or regeneration of the ecosystem is slow. In the following focus is on moderate to 
high damage. Damage may occur as mortality of non-target fish species, seabirds and mammals, 
as well as damage on benthic ecosystems and reefs. Both the exponent l and scale coefficient k 
can be adjusted. In the present context, the two fleets cause similar damage at low effort levels, 
but the damage function for fleet 2 has a larger exponent than the function for fleet 1, such that 
the damage inflicted by fleet 2 becomes significantly larger than for fleet 1 at higher effort 
levels. With respect to the non-market values vi(xi), it is assumed that it is increasing for 
increasing stocks but with a decreasing marginal value, vi’(xi) > 0 and vi’’(xi) < 0 (e.g. Clark et 
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al. 2010, Pearce 2007). When the stock decreases towards a minimum viable population, the 
marginal value is expected to increase strongly (Pearce 2007). The non-market values are 
modelled in the general form s∙ 𝑥𝑥𝑖𝑖(𝑡𝑡)𝑟𝑟, where s and r are constants, 𝑠𝑠 > 0,  0 ≥ r ≥ 1. Both the 
exponent s and scale coefficient r can be adjusted. 

Behavioural aspects of the model can be managed by an investment/disinvestment or entry/exit 
function, I, that depends on profit. Investment is, for simplicity, assumed to be linear in profit 
(𝜋𝜋). Thus, positive profits give positive investment, i.e. increase in effort, while negative profit 
means negative investment, i.e. decrease in effort.. The investment rate and disinvestment rate 
per unit of profit v (v = I/ 𝜋𝜋) determine the rate of entry and exit, and the entry-exit rate is here 
chosen to have the same value and set at a moderate level that allows development of a dynamic 
fleet.  

The numerical analysis is conducted by running a series of simulations as well as optimizations 
using the Premium solver facility in Excel. The results are shown as graphs with detailed 
comments. The simulations are conducted by setting a specific effort level and letting the model 
find equilibrium where the dependent variables: biomasses, harvest, etc. become stable, and 
then recording these results. This is done for a series of effort levels in order to display the 
relationships between effort and the dependent variables in equilibrium as a function of the 
interaction of species and marine services. In addition, simulations are conducted based on the 
assumption that fishing effort is a function of profit so that positive profits give positive 
investment, i.e. increase in effort while negative profit means negative investment, i.e. decrease 
in effort. Complementary to these simulations, a number of optimisations are carried out to 
analyse specific issues. In the optimisations, the solver is set to find the effort levels 
(investments) that provide the highest net present value for a given time period.  

Three different types of model specifications are used: A two-species model without species 
interaction, a two-species model with interaction and a three-species model. The three-species 
model includes an additional species, which have been modelled both as a top predator and as 
a forage species. The two-species model without interaction is included, as it provides a parallel 
to the conventional single species framework. The two-species model with interaction is used 
as the baseline model, because it is this model that has been analysed analytically and that thus 
forms basis for the parameter estimates. Effort is normalized such that the combined effort for 
the two fleets in the baseline model is set at 100 for the effort level where both species are 
fished down to 0. Similarly, the baseline model is used to determine an index of 100 for harvest 
and revenue respectively, such that the maximum harvest (prey and predator combined) and 
maximum revenue in equilibrium represent 100. Cost, profit, damage, non-market values and 
net value are subsequently expressed in relation to this index. Also, maximum stock in 
equilibrium (corresponding to no fishing) for the prey in the two-species interaction model is 
set to index 100 against which other stocks are normalized for display in the graphs. Although 
MSY and MEY normally are single-species concepts, in the following they are also used when 
referring to the combined MSY and MEY in the two-species model.  
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3. Data  
The analytical solution of the two species predator-prey model can determine the existence of 
equilibriums and characterise the different types of potential equilibrium points. For numerical 
solutions, parameters must be estimated. Parameters and values used for the numerical model 
are shown in table 1. The growth and interaction parameters for the two principal species, i.e. 
the prey and the predator, are determined empirically using fishing and biomass estimates for 
cod and herring from the Baltic Sea. The same parameters were determined for the North Sea 
for comparison. Although cod prefers sprat to herring (Heikinheimo 2011), the herring is 
chosen as a prey species here, because it represents a very common species, which are known 
to interact with cod, and because long time series exists for herring and cod (ICES 2012, ICES 
2013).  The parameter estimation is carried out using minimized square differences between 
the annual observed (stock plus the landings, and for cod plus the discards) and estimated 
biomasses (using the predator-prey model from 3.2) for the two species. 

The growth parameters a and b in the estimations are higher for cod than herring reflecting a 
faster growth rate and a lower carrying capacity for herring (K = a/b with no interaction). In the 
model, the parameter estimates for the period 1989-2011 from the Eastern Baltic Sea are used 
even though longer time series are available, because stocks levels were much higher in the 
years before the mentioned period, and thus do not represent the current situation. The eastern 
Baltic area is used as the case study because this area is well described and there are well-known 
interactions between the common species here, including top predators such as seals. However, 
after this estimation, parameters were in some cases adjusted in order to ensure realistic results 
using the two species model. For the 3rd species, named z in the following, the parameters for 
the top predator (e.g. grey seal in the Baltic Sea) and for the forage species (forage species could 
be small fish species or invertebrate species that provide food for both prey and predator), are 
chosen such that their biomasses and interaction are realistic compared to the two main species. 
The carrying capacity of the forage species is set at the same level as the prey x, but with a 
much higher growth rate. For the top predator, the grey seal population in the Baltic Sea is used 
as an example. It has been estimated that the historic maximum population is presumed to be 
up to 100,000 individuals (Harding and Härkönen 1999). Using an average size of 200 kg, the 
listed parameter is obtained.  

Prices are set such that they are similar to the prices of cod and herring for the period (STECF 
2013). Prices are differentiated for the predator species between the two fleets based on the 
assumption that fleet 1 is specialised in catching this species and can therefor get a higher price. 
Cost per unit of effort in the table represents that a high cost situation is set such that profit can 
be a maximum of 20 % of the revenue. An alternative setting with up to 60 %-65 % profit is 
used for a low cost situation (here costs are 0.35*u1 and 0.35*u2). v1 and v2 are the investment 
rate/disinvestment rates per unit of profit for fleet 1 and 2. 𝛿𝛿 is the discount rate.  

Table 1. Parameter values used in the numerical model. 

x carrying capacity 2780000 tonnes az-fs (forage sp.) 2 

y carrying capacity 583000 tonnes bz-fs (forage sp.) 0.0000007196 
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ztp carrying capacity 20000 tonnes dzx  (forage sp.) 0.3 

zfs carrying capacity 2780000 tonnes dzy  (forage sp.) 0.2 

ax    (prey) 0.3474 qx1 0 

bx    (prey) 0.000000125 qx2 0.0008 

cxz   (prey) 30 qy1 0.001 

dxy   (prey) 0.15 qy2 0.0007 

dxz   (prey) 0.9 px1 0.3 (EUR/kg) 

ay    (predator) 0.68975 px2 0.25 (EUR/kg) 

by    (predator) 0.000001183 py1 1.1 (EUR/kg) 

cyx   (predator) 15 py2 0.95 (EUR/kg) 

cyz (predator) 30 u1 350 (1000 EUR/vessel) 

dyz (predator) 0.45 u2 450 (1000 EUR/vessel) 

az-tp  (top predator) 0.15 v1 0.00015 

bz-tp  (top predator) 0,0000075 v2 0.00015 

czx    (top predator) 1 𝛿𝛿 3.5% 

czy    (top predator) 1   

Sources: Own estimates  

Subscript x, y, z are used to refer to the 3 different species. In addition, ztp corresponds to the top predator and zfs 
to the forage species. cyx is the interaction effect on the predator stock by the prey stock, and dxy is the predation 
on the prey by the predator, etc. 

 

4. Results  
4.1 Results from qualitative analysis in a Predator-Prey model  

The predator prey model analysed in the present context is outlined in equations (3)-(6) above 
in its most simple form, i.e. without including top predators or forage fish species. In this form 
the model includes one predator and one prey, which are both being harvested by fishermen. It 
has been shown (see Appendix B) 1 that, depending on the equilibrium values of the prey x and 
predator y, the system can enter both stable equilibria (i.e. stable node, stable focus and a centre) 
and unstable equilibria (i.e. unstable focus, unstable node and saddle point). Figure 1A-B show 
an example on how the different equilibrium points are distributed in the state space for the 
equilibrium points for x and y. The figure is drawn in such a way that for the given parameter 
values there is the possibility for a centre, stable focus and node, saddle point and unstable 
focus. E.g. if the equilibrium point is ~(x,y)=(3,5) it is a stable node, while if the equilibrium 
point is ~(x,y)= (1,6) it is a saddle point. It must be noted that also unstable nodes or unstable 
focus may exist, if both prey and predator stocks are low. Thus when/if the numerical 
evaluations outlined below reaches equilibrium, guidelines can be given about which type of 

                                                            
1 Recall that equilibrium point can have the following character: Stable node, unstable node, saddle point 
(unstable), stable focus, unstable focus and center (stable). 
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equilibrium this may be. However, it must be remembered that the equilibrium system will 
change when more species are added to the system. Again, given the complexity of equilibrium 
points already seen for the simple two-species system, this underlines how complex a full 
ecosystem model will be, and why it is most often not possible to give analytic solutions, neither 
dynamic or static to such systems, which is why numerical ecosystem models, as the one 
analysed below, are useful. Appendix B gives a thorough description of the qualitative analysis.  

 

Figure 1. Distribution of different equilibrium points. 

 

Figure 2. Distribution of different equilibrium points. Continued. 
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4.2 Results from numerical analysis 

In this section, the result of the numerical analysis that estimates the effect of fishing activity 
when a broader ecosystem approach, that includes species interaction and ecosystem services 
which are not of commercial character, is applied. The cases analysed here represent just a few 
of the potential situations that could be relevant to look at. Eight examples are analysed either 
through simulation (fig. 3-5, 8-10) or through optimization (fig. 6-7). The model has been 
established for optimization. However, simulations can also reveal important features of the 
interactions. Simulations are conducted in two ways; with investment behaviour as the driving 
force (fig. 3-4, 9) or with the effort level as an exogenous variable, that determines the output 
(fig. 5, 8, 10). In the latter case, effort is increased in a stepwise fashion, and for each step, the 
effort level is held constant and equilibrium is allowed to form. It is as such assumed that the 
effort level can be maintained until equilibrium. The indicators recorded at equilibrium (steady 
state), corresponding to a sustainable yield, are biomasses, harvest, revenues, costs, profits, 
damage, non-market values (NMV) and net values. Hence, the results of the simulations here 
depict a static fisheries model.  

In the simulations, where effort is regarded as exogenous, a fixed ratio of efforts for the two 
fleets has been used. This is a simplification, which facilitates the assessment of the result. It 
may be noted that the proportions chosen are just a few among all the possible fixed effort 
proportions. The ratio between the effort of the two fleets has been set in such a way that MSY 
of the prey and MSY of the predator are reached at the same effort level. With the applied 
parameters, the ratio between the two efforts is very close to 1:1. In addition, optimisations are 
carried out where the economic exogenous decision variable is investment behaviour, which 
determines entry and exit to the fishing fleets and hence fishing effort. The assumption is that 
fishing effort is a function of profit such that fishing vessels enter or leave the fishery depending 
on whether the profit is positive or negative. The optimisations are based directly on the model 
(1). They are carried out with a time horizon at 40 years and the simulations for a longer period, 
if necessary.  

Figure 3 show the development in stock for the prey and predator in the two-species model with 
interaction, when investment/disinvestment behaviour is assumed in the model. Hence, here 
fleets can operate independently and are not bound by a fixed effort relationship.  
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Figure 3. Development of stocks, two-species model, investment behaviour. 

 

The above case shows a smooth long-term development of stock. The harvest costs that are 
used in the profit function for this case are based on the parameters that represent a high cost 
situation in table 1. However, if the three-species model and low costs are applied, as it is shown 
in figure 4 (where only the two commercial species are shown), the harvest does not stabilise 
and the species are fished down, beginning with the prey, then the predator and finally the top 
predator. This illustrates the risks involved if effort is guided by profit as the criteria for 
investment decisions. This may also occur for the two-species model if the initial stocks or 
initial effort is high, but not for the two-species model with no species interaction. The stock 
extinction happens because a too large fleet capacity is built up and cannot be reduced in time 
to avoid fishing down the stocks, which are more sensitive to pressure when species interaction 
is included. And with the set of parameters from table 1, the three-species model is even more 
sensitive to profit-driven expansions of effort. However, tests show that the extinction of the 
stocks can be avoided if entry of vessels (investment) is sufficiently slower than exit 
(disinvestment). 
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Figure 4. Development of stock, three-species model, investment behaviour and low cost. 

 

Figure 5 displays the result of a high damage cost on the optimal policy for the 3 different model 
specifications treated in the above sections: two-species model without interaction, two-species 
model with interaction and the three-species model. For all models, there is a large difference 
between the optimal effort level and the level indicated by a MSY-based policy (model without 
interaction in fig. 5). The difference is particularly large if the MSY-policy is based on single-
species framework (similar to the two-species model without interaction) and the reality 
involves heavy damage and interaction between the three species. It is also apparent that myopic 
behaviour that maximises profit without taken the externality into account will result in too high 
an effort level, and will bring the net value down close to zero. The case is characterised by low 
operational costs. In the event of high operational costs, the difference between the optimal 
effort level and the level indicated by a MSY-policy will be even more pronounced. 
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Figure 5. Revenue and net value at equilibrium, low cost-high damage. 

 

Figure 6 shows the development of revenue and profit of a simple optimisation. The 
optimisation includes the restriction that biomasses cannot be fished down in the last year. 
Hence, the biomasses of year 41 will equal the initial biomasses. The result is very oscillating 
revenue and profit. In the optimisation an oscillating effort shows superiority to a constant 
effort. In actual fisheries, this pattern is not seen as fishing quotas are set on an annual basis and 
there are significant opportunity cost for both capital and labour.  

 
Figure 6. Optimisation: Revenue and profit, two-species model and high cost. 

 

If optimisation of profit is carried out without taking the damage cost into consideration effort 
levels can become very high as the case in figure 6, and so will the corresponding damage. The 
total discounted net values (profits minus damage costs) are in this case negligible. If on the 
other hand the damage costs were internalised by restrictions on effort or a tax on the damage, 
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then optimisation would turn out as in figure 7. Here the objective of the optimisation is changes 
from profit to the net value. Under these assumptions, the discounted value of profit is reduced 
to a little more than 80 % than profit without restrictions, but the discounted net value increase 
by orders of magnitude. It appears from the optimisations that because the damage functions 
are different for the two fleets, there is a reallocation of effort between fleets when damage is 
taken into account. The result is a higher net value, but there will also be a considerable 
reallocation of fishing effort from fleet 2 to fleet 1. The result is an increased harvest and a 
lower stock of the predator and a lower harvest and higher stock for the prey species. This result 
points to a need for regulation that targets the individual efforts of the two fleets if they cause 
different degrees of damage, e.g. a tax directed on the fleet that inflict damage on the marine 
environment.  

 

 

 

 

 

 

 

 

 

 
Figure 7. Optimisation: Profit and net value, two-species model and damage. 

 

Damage may affect the ecosystem and the food web in many ways. One important issue is 
whether the fishing activities damage the underlying food web and hence reduces the 
productivity of commercial fish stocks. In other words, it reduces an important supporting 
service and thereby it may damage future fishing. In order to handle this complex issue, the 
three-species model is set up such that the forage species represents the underlying food chain 
that supports the prey and the predator species. In figure 8, it is assumed that damage is inflicted 
on the forage species stock, which is modelled as an inversely proportional function of the size 
of the damage cost. It is calibrated such that the stock of the forage species is reduced to 50 % 
of its maximum stock at an effort level, which gives the combined MSY for the predator and 
prey. The damage function has a convex form (see section 2). The damage caused to the forage 
species stock has a significant effect on the revenue and profit compared to the situation without 
damage, a case that is shown in the figure as well. Both species collapse at effort levels just 
above the level corresponding to MSY. Although the damage is significant, MEY-based policy 
is still an appropriate guidance for advice on fishing level. A policy based on MSY seems, 
however, risky as the stock may collapse near MSY.  
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In figure 9, the development of revenue, profit and damage cost over a 50 years period is shown 
for the two-species model, when investment/disinvestment behaviour is assumed in the model. 
Profit goes to 0, because the investment behaviour causes fishermen to dissipate the profit, and 
the situation ends in a bionomic equilibrium. Damage costs reach the same level as revenue. It 
illustrates that a management system, which is determined by investment behaviour only, can 
lead to the dissipation of any potential profit and to a negative net result if damage costs are 
included, as shown in the figure.  

 
Figure 9. Development of revenue, profit and damage, medium damage-low cost. 

 

Figure 10 illustrates a case where non-market values (NMV) has a large influence on the total 
value. However, this situation will only occur if the NMV is sharply declining with a decreasing 
stock brought about by increasing effort (here reaching 0 close to MSY), meaning that the 
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species in question are highly sensitive to increases in effort. In addition, a high value of NMV 
is needed. In the case shown in figure 10 a MSY-based policy will result in loss of most of the 
NMV and almost half of the total value. An MEY-based policy will - in this case - still safeguard 
almost half of the NMV and most of the total value. 

 

Figure 10. Economic results with non-market values, three-species model. 

 

The eight cases presented above represent some of the many potential situations where it could 
be beneficial to apply a numerical model, which accounts for species interaction and a broader 
range of ecosystem services. The model used here, is characterized by flexibility and it can 
accommodate many other different examples. 

 

5. Conclusion and Discussion  
Ecosystem-based fishery management is expected to become the overall framework that will 
guide future fishing policies. This will change the objectives of the fisheries management, 
which at present mainly is based on single-species framework with focus on a few ecosystem 
services of mainly provisioning character, and aim at the Maximum Sustainable Yield (MSY) 
or Maximum Economic Yield (MEY) as guiding principles. Ecosystem-based fishery 
management by contrast will require the establishment of a new set of guiding principles, and 
therefore a need for assessing the economic effects of this management approach through 
modelling will be relevant. Such economic analysis should consider several elements: the 
interrelationship between stocks of different species, all relevant ecosystem services including 
possible trade-offs between them and the damage by fishing activities to different elements of 
the ecosystem. 

The first stage of the assessment is to analyse the predator-prey model in its most simple form, 
i.e. without including top predators or forage fish species. In this form, the model includes one 
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predator and one prey, which are both being fished. Depending on the equilibrium values of 
prey x and predator y, the system can enter both stable and unstable equilibria, and may have 
the character of node, focus, saddle point or centre. For a wide range of parameter values, the 
equilibrium will be stable. However, because analytic solutions cannot be found for more 
complex models, a numerical model is applied for the different cases, which are assessed here. 

The numerical model presented in this paper can conduct an economic analysis that conforms 
to the criteria mentioned above. The model is flexible because it can include several species at 
different trophic layers and, hence, simulate a small food web, while at the same time assess 
the economic effects of fishing on this food web. On the other hand, a disadvantage of the model 
is that the amount of prey consumed by the predator is not converted directly into predator 
growth at a certain rate (Berryman 1995b). Therefore, it can be challenging to estimate the 
direct trade-off between, on one hand, the value of leaving the prey in the sea for predators' 
consumption and subsequent harvest and, on the other hand, harvesting the prey directly.  

The model carries out economic analysis of management interventions under a set of 
assumptions about species interaction in the food web and the ecosystem effect of fishing. The 
outcome of the modelling in the present paper should therefore be interpreted as trends rather 
than concrete results. The results from the numerical analysis show that the inclusion of species 
interaction and a wider range of ecosystem services than those exclusively linked to commercial 
fishing will require a change in the conventional management policies. Both the species 
interaction and the ecosystem services need special attention.  

In general, the analyses show that species modelled with interaction can sustain less fishing 
pressure than if the they are modelled without species interaction. The explanation is that 
species interaction lowers the carrying capacity and increases predation from species in higher 
trophic layers or competition for food in the lower tropic layers, which means that less biomass, 
is available for catches. Also, the optimal level of effort in terms of profit (MEY) and harvest 
(MSY) is lower as compared to the model without interaction. Hence, if species interaction in 
its different forms is not taken into consideration when assessing management plans and 
proposing effort limits, the profitability of the fishery may change and a too high proposed 
optimal effort level will be the result. Apart from the potentially forgone profits, the excessive 
use of effort may put stocks in risk of collapse and induce more damage than optimal. The risk 
of collapse is more pronounced if the lower trophic levels are exploited more intensely than the 
upper layers and could lead to a sudden and abrupt collapse of the interlinked species. This is 
partly concluded from the analysis, due to a very simplified food web, where all three species 
depend on each other and no other species, but it illustrates the fact that the species interaction 
must be taken into account. The simplified food web leaves out some of the compensatory 
mechanisms that exist in the ecosystem, such as substitution between predation mortality and 
other natural mortality (Heithaus et al. 2008, Morissette et al. 2012). The result might be that 
the effect of species interaction on harvest and profit might be overestimated to some extent.  

Besides interaction, the numerical model assesses how the economic result is affected by the 
inclusion of a broad range of ecosystem services. This is done through the damage cost 
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functions, which depends on effort and reduces the net value, and a set of non-market values, 
which are functions that depend on the stock of the species. Due to lack of data about the link 
between fishing effort and the economic results of damage, these functions have been assigned 
a range of plausible values with a form and a magnitude that will give them sufficient weight 
to influence the net value. A sharply rising damage function will have a significant influence 
on the optimal effort level. In particular, there is a large difference between the optimal effort 
level with damage costs internalised in the decision and the level indicated by a conventional 
MSY-policy based on a single-species framework if reality involves heavy damage and 
interaction between species. The MEY and the MSY targets may in some situations not be far 
apart on the effort-yield curve. In many cases though, a MEY target can accommodate the 
broader range of ecosystem-based policy goals rather well. However, in an increased damage 
scenario, a MEY-based policy would also result in a significant loss in net value. Damage may 
also be disproportional high compared to the profit if the exploitation of the resource is 
determined by investment behaviour alone. Finally, if fleets cause different degrees of damage 
then optimal regulation must determine specific targets for each fleet. 

The inclusion of non-market values may have a relatively little influence on the optimal effort 
level in many cases. However, if these values are highly significant and directly related to 
species that are very sensitive to fishing activities, their value may influence the fishery policy. 
Such cases of highly valuable and vulnerable species need a policy specifically directed towards 
this issue, and a solution probably means that effort needs to be reduced very substantially.  

The examples shown in this paper suggest that the introduction of ecosystem-based fishery 
management (EBFM), i.e. the inclusion of a broader range of ecosystem services and species 
interactions in policy decisions, would require a revision of the conventional management 
policies. The widely used target of MSY, or the corresponding rate of fishing mortality that a 
population can sustain, seems less useful in the new context. Besides the problem that the MSY 
target ignores the costs of fishing and, therefore, is economically unattractive, it is also in 
contradiction with EBFM as indicated by several cases in the present paper. The MSY concept 
is generally seen as an integral part of sustainable management of the fisheries (i.e. EBFM) as 
explained by Richerson et al. (2010). They also point to the MSY as a questionable in this 
context and suggest that the stock should be higher than the one, which provides MSY. 
However, the extent to which the fishing mortality should be reduced will depend on the 
character and value of the other goals in the EBFM. On the other hand, the conventional 
management policies based on a MEY target will in many cases be close to an optimal policy. 
There exist ecological conditions – vulnerable species and ecosystems – that require additional 
policy measures. Such measures or instruments could include requirement of special gear to 
avoid by-catch or damage to species or structures like reefs and closed areas to protect 
threatened or sensitive species, or taxes on these damages. Regulation using individual quotas 
might not provide an optimal solution if fleet segments impact the marine environment 
differently and should be complemented with other instruments.  

The analyses carried out in this paper show the shortcomings of conventional qualitative 
analytical approaches because of the complexities of marine ecosystems. Numerical models 
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also show shortcomings in particular because specific functional forms are used and data are 
short in many areas. However, it is shown that much insight can be gained from using such 
relatively simple models, and a prosperous road for future research seems to be that the 
numerical models are specifically designed for specific problems and areas in such a way that 
not least damages and benefits on the ecosystem services from the fishing activity are mapped 
thoroughly. Therefore, it seems that no uniform measure such as the MSY is desirable.   
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Appendix A. A General Model for Social Optimal Management of a 
Multiple Species and Multiple Fleet Fisheries with an Ecosystem Approach 
The model has been set-up for simulating and assessing the optimal management of a multiple 
species and multiple fleet fishery, and it captures three main elements; fishing profit, non-
fishing values and externalities with respect to fishing. The model could be made spatially 
explicit if needed. The goal of the fishery management is to maximize the net present social 
value, S, of a multi-species fishery and multiple fleet fisheries by choosing the fishing effort in 
each period. 

 

Objective function: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆 = max
𝑒𝑒𝑒𝑒(𝑡𝑡)

∫ 𝑒𝑒−𝛿𝛿𝛿𝛿∞
0 [∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡), 𝑥𝑥𝑖𝑖(𝑡𝑡)) + 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡)) −  𝑑𝑑𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡))] 𝑑𝑑𝑑𝑑 𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 ,           (A1) 

s.t.  dxi/dt = gi(x, dij) - hij(ej, xi)               (A2) 

 0 ≤ ej ≤ emax 

where:  

the objective function,  𝜋𝜋𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡), 𝑥𝑥𝑖𝑖(𝑡𝑡)) +  𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡)) −  𝑑𝑑𝑖𝑖𝑖𝑖(𝑒𝑒𝑗𝑗(𝑡𝑡), and the state equations, 
dxi/dt = gi(x,) - hij(ej, xi), are continuously differentiable functions. 

πij(ej (t ), xi (t)) = pi·hij(ej, xi)  – cij·ej, = profit (or resource rent) from fishing species i for fleet j 
in period t. 

vi(xi(t)) = GVi(xi(t) – DCi(xi(t)), non-fishing net-value of ecosystem services for species i in 
period t, e.g. recreation, non-use (existence) value. vi grows with xi, but at a decreasing rate. 
∂vi/∂xi > 0. ∂2vi/∂x2i < 0. The possible costs of vi are captured in the profit function as forgone 
profit and increased costs due to predation on the commercial species or as competition for food 
resources. The costs can also take the form of a direct damage on catch and gear which is 
specified in ci.  

GVi(xi(t)) = gross value of ecosystem services for species i in period t, e.g. value of recreation 
or existence value. GVi (xi (t)) ≥ 0. 

DCi(xi(t)) = Possible (damage) cost related to maintaining stock of non-commercial species i in 
period t (nuisance species or invasive species), e.g. damage to catch by seals or seabirds. DCi 
(xi (t)) ≥ 0. 

dij(ej(t)) = externality of fishing activities related to species i and fleet j in period t, e.g. damage 
on sea-floor, discards, activity in fishing communities. In most cases dij(ej(t)) is a negative 
externality that reduces the net value, but it can be positive (e.g. activity in fishing 
communities).  

ej(t) = effort for fleet j in period t. ej (t) ≥ 0. 



26 

xi (t) = stock of species i in period t. In tons or numbers. xi (t) > 0. 

x = (x1, x2, …, xi).  

gi(x) = growth of species i. gi ≥ 0.  

hij(ej, xi) = qijejxi. Harvest of species i for fleet j. hij(ej, xi) ≥ 0.  

qij = catchability coefficient for species i and fleet j. 

pi = price of species i. pi ≥ 0. 

cij = cost per unit of harvest for species i taken by fleet j. cij ≥ 0. 

n = number of species, n ∈ N 

m = number of fleets, m ∈ N  

q = number of ecosystem services, q ∈ N  

i = species number, i = 1,…, n 

j = fleet number,  j = 1,…, m 

t = time. 

δ = discount rate. δ = ≥ 0.  

 

In order to find an optimal solution the maximum principle must be applied. However, as shown 
in appendix B even a predator-prey model with one fleet, without damage function and non-
market values, is complicated to solve analytically. Hence, in the following a simple version of 
the model is analysed, consisting of two species without interaction and one fleet, one 
externality and one non-market value linked to one of the two species (two state variables and 
one control variable). For simplicity the effect of damage on growth is not considered. The 
present value Hamiltonian can be expressed as follows: 

H = ∑ [e−𝛿𝛿𝛿𝛿 ((𝜋𝜋𝑖𝑖(𝑒𝑒(𝑡𝑡), 𝑥𝑥𝑖𝑖(𝑡𝑡))  +  𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 )  −d(e(t))) + λi(gi(x) −hi(e, xi))]           (A3) 

Inserting the relevant expressions, this gives the following.  

H= e-δt [p1·q1·x1e +p2·q2·x2𝑒𝑒 −ce + v1(x1)−d(e)]+ λ1(g(x1)−q1·e·x1) + λ2(g(x2)–q2·e·x2), 

where λi are the co-state variable and the shadow price of x1and x2.  

From H we get: 

The maximum principle: ∂H/∂e = 0 

 e-δt (p1·q1·x1 + p2·q2·x2−c + 𝑣𝑣1(𝑥𝑥1(𝑒𝑒′(𝑡𝑡))– d’(e)) – λ1(q1·x1) – λ2( q2·x2) = 0           (A4) 

Adjoint equations: 

∂λ1/∂t =−∂H/∂x1 and  
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∂λ2/∂t ==−∂H/∂x2 

 ∂H/∂x1 = e-δt(p1·q1 e + v1’(x1)) + λ1(g1’– q1·e) = – 𝜆𝜆1̇            (A5) 

and ∂H/∂x2 = e-δtp2·q2 e + λ2(g2’ – q2·e) = – 𝜆𝜆2̇ 

Dynamic constraints: 

∂x1/∂t =𝑥̇𝑥1 = g1 – q1·e·x1               (A6) 

∂x2/∂t =𝑥̇𝑥2 = g2 – q2·e·x2 

Following Clark (1990), chapter 10, p. 317-18, and initially ignoring the externality and non-
market value, a solution in equilibrium is considered; 𝑥𝑥1̇, 𝑥𝑥2̇ = 0. 

Hence, e = g(x1)/(q1·x1) = g(x2)/(q2· x2)               (A7) 

The adjoint equations can be rewritten as: 

𝜆𝜆1̇– 𝜆𝜆1 𝛾𝛾1= –e-δt (p1·q1 e)  

𝜆𝜆2̇– 𝜆𝜆2 𝛾𝛾2= –e-δt (p2·q2 e)  

Where 𝛾𝛾1= g’(x1) – g(x1)/x1 and 𝛾𝛾2= g’(x2) – g(x2)/x2 

Solutions to these equations are (both are constants): 

eδt 𝜆𝜆1 = 𝑝𝑝1·𝑞𝑞1 𝑒𝑒 
𝛾𝛾1+𝛿𝛿

 

                 (A8) 

eδt 𝜆𝜆2 = 𝑝𝑝2·𝑞𝑞2 𝑒𝑒 
𝛾𝛾2+𝛿𝛿

 

Using these results to reorganise the Hamiltonian, the following is obtained: 

𝑝𝑝1·𝑞𝑞1 �𝑥𝑥1 – 𝑔𝑔(𝑥𝑥1)
𝛾𝛾1+𝛿𝛿

� + 𝑝𝑝2·𝑞𝑞2 �𝑥𝑥2 – 𝑔𝑔(𝑥𝑥2)
𝛾𝛾2+𝛿𝛿

� = c               (A9) 

Equations (A9) together with (A7) determines the optimal equilibrium populations, although it 
is not possible to obtain a complete solution (Clark 1990).  

Adding v1’(x1), 𝑣𝑣1(𝑥𝑥1�𝑒𝑒′(𝑡𝑡)�  and d’(e)) complicates the solution, particularly because v1(x1) 
depends on t. Hence, there is good reason to apply numerical approaches for the analysis of the 
more complex settings with more than one interacting species, externalities and non-market 
values.  
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Appendix B. Predator-prey model  

1. Background 

According to Berryman et al. (1995) the general food web equation for the stock of species 𝒙𝒙𝒊𝒊 
can be given by: 

1
𝑥𝑥𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

 = 𝑎𝑎𝑖𝑖 −  𝑏𝑏𝑖𝑖 𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖
∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗

− ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑘𝑘
𝑥𝑥𝑖𝑖

    (B1) 

Where 𝑥𝑥𝑗𝑗 are the stocks of species j that  𝑥𝑥𝑖𝑖 consumes, whereas  𝑥𝑥𝑘𝑘 are the stocks of species k 
that prey on 𝑥𝑥𝑖𝑖.  

Assuming a simplified food chain with only one predator (y) eating one prey (x) and including 
the fishing mortality Fi(hij(ej, xi)) we get the following equations2. In the following subscript x 
and y are used to refer to prey and predator respectively: 

x
x

xx F
x

ydxba
dt
dx

x
−

⋅
−⋅−=

1  (prey)   (B2) 

And 

y
y

yy F
xc

yyba
dt
dy

y
−

⋅
−⋅−=

1  (predator)   (B3) 

Or in re-written form: 

xFydxbax
dt
dx

xxxx ⋅−⋅−⋅−= )(     (B4) 

yF
xc

y
ybay

dt
dy

y
y

yy ⋅−
⋅

−⋅−=
2

)(     (B5) 

ax, ay, bx, by, cy and dx are positive parameters. ax and ay are related to the intrinsic growth rate, 
bx and by are related to intraspecific competition for fixed resources and cy and dx are 
concerned with interaction between species. In these equations the terms )( xbax xx ⋅−  and

)( ybay yy ⋅− can be recognized as the logistic growth equation, including both recruitment 

and natural mortality other than from predation relationships. The terms 
xc

y

y ⋅

2

 and ydx ⋅  

describes the predator-prey relationship: when the amount of prey increases, the overall 
mortality of the predator decreases and vice versa, while the overall mortality of the predator 
increases when its own stock increases due to increased competition for the resources 
available. For the prey the overall mortality decreases when the predator density decreases 
and vice versa. 

                                                            
2 The model is limited to a two-species predator-prey model in order to handle it analytically. In section 3.3 and 
appendix C, more species may be added in the numerical version. 
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At present nothing more is assumed about the fishing mortalities xF  and yF but in the numerical 

version they will be split into fleet segment mortalities as a function of segment efforts.  

 

2.  Equilibriums 

Equilibrium of each stock is found when x respectively y  is zero. Equilibrium of the whole 
system is obtained when x and y  are zero simultaneously.  

Prey: x-isoclines: x equal to zero: 

x = xFydxbax xxxx ⋅−⋅−⋅− )(  = 0   

𝑦𝑦 =  𝑎𝑎𝑥𝑥 𝑥𝑥−𝑏𝑏𝑥𝑥 𝑥𝑥2− 𝐹𝐹𝑥𝑥 𝑥𝑥 
𝑑𝑑𝑥𝑥 

 = 𝑥𝑥 
𝑑𝑑𝑥𝑥 

 (𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑥𝑥 −  𝑏𝑏𝑥𝑥 𝑥𝑥  ), dx  > 0  (B6) 

y = 𝑥𝑥 
𝑑𝑑𝑥𝑥 

 (𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑥𝑥 −  𝑏𝑏𝑥𝑥 𝑥𝑥  ) = − 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥

 x2 +  𝑎𝑎𝑥𝑥 −𝐹𝐹𝑥𝑥
𝑑𝑑𝑥𝑥

 x 

The isocline crosses the x-axis in 2 points (y = 0) 

The equation: − 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥

 x2 +  𝑎𝑎𝑥𝑥 −𝐹𝐹𝑥𝑥
𝑑𝑑𝑥𝑥

 x = 0 has the solutions: 

x = 0 and x = 𝑎𝑎𝑥𝑥−𝐹𝐹𝑥𝑥
𝑏𝑏𝑥𝑥

  

and the isocline has a global maximum at x= 𝑎𝑎𝑥𝑥−𝐹𝐹𝑥𝑥
2 𝑏𝑏𝑥𝑥

  (𝑎𝑎𝑥𝑥 ≥ 𝐹𝐹𝑥𝑥)  

Predator: y-isoclines: y equal to zero: 

y = yF
xc

y
ybay y

y
yy ⋅−

⋅
−⋅−

2

)(  = 0   

𝑦𝑦(𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦) = 
xc

y

y ⋅

2

   

𝑥𝑥 =  𝑦𝑦
𝑐𝑐𝑦𝑦 (𝑎𝑎𝑦𝑦 −𝐹𝐹𝑦𝑦− 𝑏𝑏𝑦𝑦 𝑦𝑦)

      (B7) 

x is non-negative, and for this to be true the following must hold (with  cy>0): 

(𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦)>0  

0 ≤ y < 𝑎𝑎𝑦𝑦−𝐹𝐹𝑦𝑦
𝑏𝑏𝑦𝑦

 (𝑏𝑏𝑦𝑦> 0, 𝑎𝑎𝑥𝑥 ≥ 𝐹𝐹𝑥𝑥) 

The y-isocline is increasing in x and does only cross the x-axis and y-axis in the point (0,0) 
and it goes asymptotically towards 𝑎𝑎𝑦𝑦−𝐹𝐹𝑦𝑦

𝑏𝑏𝑦𝑦
  when x goes to infinity. 

Isoclines cross: x and y equal to zero, hence where equations (B6) and (B7) cross: 

y = 𝑥𝑥 
𝑑𝑑 

 (𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑥𝑥 −  𝑏𝑏𝑥𝑥 𝑥𝑥  )  
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𝑥𝑥 =  
𝑦𝑦

𝑐𝑐 (𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦)
  

The value of x is then inserted in the first equation (c and d for simplicity): 

𝑐𝑐𝑐𝑐(𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦) − 𝑎𝑎𝑥𝑥 +  𝐹𝐹𝑥𝑥  = − 𝑏𝑏𝑥𝑥𝑦𝑦
𝑐𝑐 (𝑎𝑎𝑦𝑦 −𝐹𝐹𝑦𝑦− 𝑏𝑏𝑦𝑦 𝑦𝑦)

 

Multiplying with the term 𝑐𝑐(𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦) and rearranging we get the following quadratic 
equation: 

H·y2 +I·y + G = 0     (B8) 

Where H, I and G are specified as: 

H = dby2c2  

I = 2Fybydc2 – 2aybydc2 +caxby – cFxby + bx  

G = dc2(ay – Fy)2 – caxay + caxFy + cayFx – cFxFy  

Hence, there may be 0, 1 or 2 solutions depending on the parameter values.  

The above evaluations show that there are possibilities of three equilibrium points, in addition 
to the trivial (x, y) = (0, 0): the point where the x-isocline (equation 6) crosses the x-axis (i.e. 
when y equals zero, no predator) the point (𝒂𝒂𝒙𝒙−𝑭𝑭𝒙𝒙

𝒃𝒃𝒙𝒙
, 0), which is a viable point as long 𝒂𝒂𝒙𝒙−𝑭𝑭𝒙𝒙

𝒃𝒃𝒙𝒙
  > 0, 

and finally one or possibly two inner points where the two isoclines cross each other. The actual 
character of the inner equilibrium points are derived analytically below. 

 

3.  Characterization of equilibrium points  

The character of the equilibrium points can be determined by the eigenvalues of the below 
system of ordinary differential equations (ODEs), hence we get the following: 

x= xFydxbax xxxx ⋅−⋅−⋅− )(  = F(x,y) 

y = yF
xc

y
ybay y

y
yy ⋅−

⋅
−⋅−

2

)(  = y �𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦 −
𝑦𝑦
𝑐𝑐𝑐𝑐
� = G(x,y) 

Matrix A contains the first order differential coefficients from the two equations: 

A = �𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕� 

Where (in equilibrium),  

𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑥𝑥 - 2 𝑏𝑏𝑥𝑥 𝑥𝑥 =   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 - 𝑏𝑏𝑥𝑥 𝑥𝑥 = 𝛼𝛼𝑥𝑥𝑥𝑥 

𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = - 𝑑𝑑𝑥𝑥 = 𝛼𝛼𝑥𝑥𝑥𝑥 

𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝑦𝑦
2

𝑐𝑐𝑥𝑥2
 = 𝛼𝛼𝑦𝑦𝑦𝑦 
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𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 − 2 𝑏𝑏𝑦𝑦 𝑦𝑦 −  2𝑦𝑦
𝑐𝑐𝑐𝑐

 = − 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

 = 𝛼𝛼𝑦𝑦𝑦𝑦   (as �𝑎𝑎𝑦𝑦 − 𝐹𝐹𝑦𝑦 −  𝑏𝑏𝑦𝑦 𝑦𝑦 −
𝑦𝑦
𝑐𝑐𝑐𝑐
� = 0)  

Depending on the sign of the eigenvalues of matrix A above and whether these are complex 
number, we can organise the types of equilibrium (Clark 1990). 

Table B1. Types of equilibria  

Character of 
equilibrium point 

Values of λ Conditions 

Stable node λ1, λ2 < 0 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < − √𝐷𝐷 and (𝛼𝛼𝑥𝑥𝑥𝑥 +
𝛼𝛼𝑦𝑦𝑦𝑦) < 0 

D ≥ 0 

Stable focus λ1, λ2 complex, re λi < 0 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < 0 D < 0 

Saddle point λ1 < 0 < λ2 −√𝐷𝐷 < (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < √𝐷𝐷 D ≥ 0 

Unstable node λ1, λ2 > 0 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)  > √𝐷𝐷  and (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) >
0 

D ≥ 0 

Unstable focus λ1, λ2 complex, re λi > 0 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > 0 D < 0 

Center λ1, λ2 complex, re λi = 0 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) = 0 D < 0 

 

𝜆𝜆1 and 𝜆𝜆2 are the eigenvalues of matrix A above, which means that 𝜆𝜆1 and 𝜆𝜆2 are the roots of 
the equation:  

det(A - 𝜆𝜆I) = �
 𝛼𝛼𝑥𝑥𝑥𝑥 − 𝜆𝜆 𝛼𝛼𝑥𝑥𝑥𝑥
𝛼𝛼𝑦𝑦𝑦𝑦 𝛼𝛼𝑦𝑦𝑦𝑦 − 𝜆𝜆�  (I is the identity matrix), and determined by: 

(𝛼𝛼𝑥𝑥𝑥𝑥 − 𝜆𝜆)( 𝛼𝛼𝑦𝑦𝑦𝑦 − 𝜆𝜆) − 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 = 0 

= 𝜆𝜆2 − 𝜆𝜆 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) + (𝛼𝛼𝑥𝑥𝑥𝑥𝛼𝛼𝑦𝑦𝑦𝑦 − 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥) 

D = (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)2 − 4(𝛼𝛼𝑥𝑥𝑥𝑥𝛼𝛼𝑦𝑦𝑦𝑦 − 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥) = (𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2 + 4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

𝜆𝜆 =½( (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) ± �(𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2  +  4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥)   (B9) 

In order to obtain the detailed conditions for the different types of equilibrium it is necessary to 
look closer at the different expressions.  

First, we examine the discriminant, D. 

D ≥ 0:  

 (𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2  +  4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 ≥ 0  

  (𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2 ≥ −4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

 �𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦� ≥ �− 4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 = 2 𝑦𝑦
𝑥𝑥
√𝑑𝑑𝑥𝑥

𝑐𝑐
  (𝑖𝑖. 𝑒𝑒.− 4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 ≥ 0 for all 𝑥𝑥,𝑦𝑦 > 0) 

for αxx > αyy:  

𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦 ≥  2
𝑦𝑦
𝑥𝑥
√
𝑑𝑑𝑥𝑥
𝑐𝑐
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   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

− 𝑏𝑏𝑥𝑥 𝑥𝑥 + 𝑏𝑏𝑦𝑦 𝑦𝑦 + 𝑦𝑦
𝑐𝑐𝑐𝑐

 ≥ 2 𝑦𝑦
𝑥𝑥
√𝑑𝑑𝑥𝑥

𝑐𝑐
 

 𝑑𝑑𝑥𝑥 𝑦𝑦 − 𝑏𝑏𝑥𝑥 𝑥𝑥2 + 𝑏𝑏𝑦𝑦 𝑦𝑦 𝑥𝑥 + 𝑦𝑦
𝑐𝑐
 − 2𝑦𝑦√𝑑𝑑𝑥𝑥

𝑐𝑐
 ≥ 0  (as x > 0) 

 𝑦𝑦(𝑑𝑑𝑥𝑥 + 𝑏𝑏𝑦𝑦 𝑥𝑥 + 1
𝑐𝑐
 − 2√𝑑𝑑𝑥𝑥

𝑐𝑐
) ≥ 𝑏𝑏𝑥𝑥 𝑥𝑥2 

 𝑦𝑦 ≥ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐴𝐴+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 , A =  (𝑑𝑑𝑥𝑥 +  1

𝑐𝑐
 − 2√𝑑𝑑𝑥𝑥

𝑐𝑐
)                       (B10) 

for αxx < αyy:  

𝛼𝛼𝑦𝑦𝑦𝑦 − 𝛼𝛼𝑥𝑥𝑥𝑥 ≥  2
𝑦𝑦
𝑥𝑥
√
𝑑𝑑𝑥𝑥
𝑐𝑐

 

 − 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

  −   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

+ 𝑏𝑏𝑥𝑥 𝑥𝑥 ≥ 2 𝑦𝑦
𝑥𝑥
√𝑑𝑑𝑥𝑥

𝑐𝑐
 

 −𝑦𝑦(𝑑𝑑𝑥𝑥 + 𝑏𝑏𝑦𝑦 𝑥𝑥 +  1
𝑐𝑐
 + 2√𝑑𝑑𝑥𝑥

𝑐𝑐
) ≥ −𝑏𝑏𝑥𝑥 𝑥𝑥2 

 𝑦𝑦 ≤ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐵𝐵+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 , B =  (𝑑𝑑𝑥𝑥 +  1

𝑐𝑐
 + 2√𝑑𝑑𝑥𝑥

𝑐𝑐
)                       (B11) 

When is 𝛼𝛼𝑥𝑥𝑥𝑥 > 𝛼𝛼𝑦𝑦𝑦𝑦: 
  𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

− 𝑏𝑏𝑥𝑥 𝑥𝑥 >−𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

 

 𝑑𝑑𝑥𝑥 𝑦𝑦 − 𝑏𝑏𝑥𝑥 𝑥𝑥2 > − 𝑏𝑏𝑦𝑦 𝑦𝑦 𝑥𝑥 −  𝑦𝑦
𝑐𝑐
  

 y (𝑑𝑑𝑥𝑥 + 𝑏𝑏𝑦𝑦 𝑥𝑥 +  1
𝑐𝑐
) > 𝑏𝑏𝑥𝑥 𝑥𝑥2 

 y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)

 

When is  αxx < αyy 

y < 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)

 

D < 0, with some adjustments of above we get: 

for αxx ≥ αyy:  

 𝑦𝑦 < 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐴𝐴+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 , A =  (𝑑𝑑𝑥𝑥 +  1

𝑐𝑐
 − 2√𝑑𝑑𝑥𝑥

𝑐𝑐
)                       (B12) 

for αxx < αyy:  

 𝑦𝑦 > 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐵𝐵+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 , B =  (𝑑𝑑𝑥𝑥 +  1

𝑐𝑐
 + 2√𝑑𝑑𝑥𝑥

𝑐𝑐
)                       (B13) 

Table B2. Properties of the discriminant  
Discriminant, D ≥ 0 Discriminant, D < 0 

𝑦𝑦 ≥ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐴𝐴+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 and y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)

  𝑦𝑦 ≥ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐴𝐴+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 𝑦𝑦 < 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐴𝐴+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 and y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)
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or 

𝑦𝑦 ≤ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐵𝐵+ 𝑏𝑏𝑦𝑦 𝑥𝑥
  and y < 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)

  𝑦𝑦 ≤ 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐵𝐵+ 𝑏𝑏𝑦𝑦 𝑥𝑥
 

 

or 

𝑦𝑦 > 𝑏𝑏𝑥𝑥 𝑥𝑥2

𝐵𝐵+ 𝑏𝑏𝑦𝑦 𝑥𝑥
  and y < 𝑏𝑏𝑥𝑥 𝑥𝑥2

 𝑏𝑏𝑦𝑦 𝑥𝑥 +(𝑑𝑑𝑥𝑥 +
1
𝑐𝑐)

 

A =  (𝑑𝑑𝑥𝑥 +  1
𝑐𝑐
 − 2√𝑑𝑑𝑥𝑥

𝑐𝑐
), B =  (𝑑𝑑𝑥𝑥 +  1

𝑐𝑐
 + 2√𝑑𝑑𝑥𝑥

𝑐𝑐
) 

 

4. Examination of the different types of equilibria points  

Stable node 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)  <  −− √𝐷𝐷 , (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)  ≤ 0, D ≥ 0 

 �𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦� > √𝐷𝐷 

 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)2 > (𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2  +  4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

 𝛼𝛼𝑥𝑥𝑥𝑥𝛼𝛼𝑦𝑦𝑦𝑦 > 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

Now inserting the terms from above: 

(  𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 − 𝑏𝑏𝑥𝑥 𝑥𝑥)(− 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

) > −𝑑𝑑𝑥𝑥𝑦𝑦2

𝑐𝑐𝑥𝑥2
 

 −   𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦2

𝑥𝑥
 −   𝑑𝑑𝑥𝑥𝑦𝑦

2

𝑐𝑐𝑥𝑥2
 + 𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑦𝑦

𝑐𝑐
 > −𝑑𝑑𝑥𝑥𝑦𝑦2

𝑐𝑐𝑥𝑥2
 

 𝑏𝑏𝑥𝑥 (𝑥𝑥 𝑏𝑏𝑦𝑦 + 1
𝑐𝑐
) > 𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦

𝑥𝑥
 

 y < 𝑥𝑥𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦𝑑𝑑𝑥𝑥

(𝑥𝑥 𝑏𝑏𝑦𝑦 + 1
𝑐𝑐
) 

 y < 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥
𝑥𝑥2 + 𝑏𝑏𝑥𝑥

𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑐𝑐
𝑥𝑥                         (B14) 

With the roots (0, 0) and (− 1
𝑏𝑏𝑦𝑦𝑐𝑐

 , 0) 

ii) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < 0 

   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 − 𝑏𝑏𝑥𝑥 𝑥𝑥 + (− 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

) < 0 

   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 − 𝑏𝑏𝑥𝑥 𝑥𝑥 − 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

 < 0 

 𝑑𝑑𝑥𝑥 𝑦𝑦 − 𝑏𝑏𝑥𝑥 𝑥𝑥2 − 𝑏𝑏𝑦𝑦 𝑦𝑦 𝑥𝑥 −  𝑦𝑦
𝑐𝑐
 < 0 

 𝑦𝑦(𝑑𝑑𝑥𝑥 − 𝑏𝑏𝑦𝑦 𝑥𝑥 −  1
𝑐𝑐
) < 𝑏𝑏𝑥𝑥 𝑥𝑥2 

 y < 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐶𝐶)
 , for �−𝑏𝑏𝑦𝑦 𝑥𝑥 + 𝐶𝐶� > 0 and y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐶𝐶)
 , for �−𝑏𝑏𝑦𝑦 𝑥𝑥 + 𝐶𝐶� < 0 ,  (B15) 

where C = (𝑑𝑑𝑥𝑥 −  1
𝑐𝑐
)   

Stable focus 
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From above 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < 0 ; and D <  0 

 y < 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐶𝐶)
 , where C = (𝑑𝑑𝑥𝑥 −  1

𝑐𝑐
)   and D < 0 

Saddle point 

Here we look at two separate cases, (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > 0 and (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < 0. In both cases it is 
assumed that D ≥ 0 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > 0 

In this case (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) + √𝐷𝐷  is trivially >0, but it must be ensured that (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) − √𝐷𝐷 <
0 

(𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < √𝐷𝐷   

 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)2 < D 

 𝛼𝛼𝑥𝑥𝑥𝑥𝛼𝛼𝑦𝑦𝑦𝑦 < 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

 y > 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥
𝑥𝑥2 + 𝑏𝑏𝑥𝑥

𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑐𝑐
𝑥𝑥                         (B16) 

or  

ii) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) < 0 

In this case (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) − √𝐷𝐷  is trivially <0, but it must be ensured that (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) + √𝐷𝐷 >
0: 

 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > −√𝐷𝐷 , D ≥ 0 

 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)2 < D 

 y > 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥
𝑥𝑥2 + 𝑏𝑏𝑥𝑥

𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑐𝑐
𝑥𝑥  (similar to B16) 

Unstable node 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)  > √𝐷𝐷 , D ≥ 0 

 (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦)2 > (𝛼𝛼𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑦𝑦𝑦𝑦)2  +  4𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

 𝛼𝛼𝑥𝑥𝑥𝑥𝛼𝛼𝑦𝑦𝑦𝑦 > 𝛼𝛼𝑦𝑦𝑦𝑦𝛼𝛼𝑥𝑥𝑥𝑥 

Now inserting the terms from above: 

(  𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 − 𝑏𝑏𝑥𝑥 𝑥𝑥)(− 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

) > −𝑑𝑑𝑥𝑥𝑦𝑦2

𝑐𝑐𝑥𝑥2
 

   𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦
2

𝑥𝑥
 −   𝑑𝑑𝑥𝑥𝑦𝑦

2

𝑐𝑐𝑥𝑥2
 + 𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑦𝑦

𝑐𝑐
 > −𝑑𝑑𝑥𝑥𝑦𝑦2

𝑐𝑐𝑥𝑥2
 

 𝑏𝑏𝑥𝑥 (𝑥𝑥 𝑏𝑏𝑦𝑦 + 1
𝑐𝑐
) > 𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑦𝑦

𝑥𝑥
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 y < 𝑥𝑥𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦𝑑𝑑𝑥𝑥

(𝑥𝑥 𝑏𝑏𝑦𝑦 + 1
𝑐𝑐
) 

 y < 𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥
𝑥𝑥2 + 𝑏𝑏𝑥𝑥

𝑑𝑑𝑥𝑥𝑏𝑏𝑦𝑦𝑐𝑐
𝑥𝑥                         (B17) 

With the roots (0, 0) and ( 1
𝑏𝑏𝑦𝑦𝑐𝑐

 , 0) 

ii) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > 0 

   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 - 𝑏𝑏𝑥𝑥 𝑥𝑥 + (− 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

) > 0 

   𝑑𝑑𝑥𝑥𝑦𝑦
𝑥𝑥

 − 𝑏𝑏𝑥𝑥 𝑥𝑥 − 𝑏𝑏𝑦𝑦 𝑦𝑦 −  𝑦𝑦
𝑐𝑐𝑐𝑐

 > 0 

 𝑑𝑑𝑥𝑥 𝑦𝑦 − 𝑏𝑏𝑥𝑥 𝑥𝑥2 − 𝑏𝑏𝑦𝑦 𝑦𝑦 𝑥𝑥 −  𝑦𝑦
𝑐𝑐
 > 0 

 𝑦𝑦(𝑑𝑑𝑥𝑥 − 𝑏𝑏𝑦𝑦 𝑥𝑥 −  1
𝑐𝑐
) > 𝑏𝑏𝑥𝑥 𝑥𝑥2 

 y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐺𝐺)
 , where G = (𝑑𝑑𝑥𝑥 −  1

𝑐𝑐
)                         (B18) 

Unstable focus 

From above with adjustments 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) > 0 

 y > 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐶𝐶)
 , where G = (𝑑𝑑𝑥𝑥 −  1

𝑐𝑐
)   and D < 0 

Center 

From above with adjustments 

i) (𝛼𝛼𝑥𝑥𝑥𝑥 + 𝛼𝛼𝑦𝑦𝑦𝑦) = 0 

 y = 𝑏𝑏𝑥𝑥 𝑥𝑥2

(−𝑏𝑏𝑦𝑦 𝑥𝑥+𝐶𝐶)
 , where G = (𝑑𝑑𝑥𝑥 −  1

𝑐𝑐
)   and D < 0 

With the above conditions, we obtain the following specific conditions for the equilibrium 
points: 

Table B3. Conditions for the equilibrium points. 

Character of 
equilibrium point 

Specific conditions 

Stable node y < 𝒃𝒃𝒙𝒙
𝒅𝒅𝒙𝒙
𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒙𝒙

𝒅𝒅𝒙𝒙𝒃𝒃𝒚𝒚𝒄𝒄
𝒙𝒙, and y < 𝒃𝒃𝒙𝒙 𝒙𝒙𝟐𝟐

(−𝒃𝒃𝒚𝒚 𝒙𝒙+𝑮𝑮)
  ; D≥ 𝟎𝟎 

Stable focus y < 𝒃𝒃𝒙𝒙 𝒙𝒙𝟐𝟐

(−𝒃𝒃𝒚𝒚 𝒙𝒙+𝑮𝑮)
 , D < 0 

Saddle point y > 𝒃𝒃𝒙𝒙
𝒅𝒅𝒙𝒙
𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒙𝒙

𝒅𝒅𝒙𝒙𝒃𝒃𝒚𝒚𝒄𝒄
𝒙𝒙 , D≥ 𝟎𝟎 

Unstable node y < 𝒃𝒃𝒙𝒙
𝒅𝒅𝒙𝒙
𝒙𝒙𝟐𝟐 + 𝒃𝒃𝒙𝒙

𝒅𝒅𝒙𝒙𝒃𝒃𝒚𝒚𝒄𝒄
𝒙𝒙, and y > 𝒃𝒃𝒙𝒙 𝒙𝒙𝟐𝟐

(−𝒃𝒃𝒚𝒚 𝒙𝒙+𝑮𝑮)
  ; D≥ 𝟎𝟎 
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Unstable focus y > 𝒃𝒃𝒙𝒙 𝒙𝒙𝟐𝟐

(−𝒃𝒃𝒚𝒚 𝒙𝒙+𝑮𝑮)
 , D < 0 

Center y = 𝒃𝒃𝒙𝒙 𝒙𝒙𝟐𝟐

(−𝒃𝒃𝒚𝒚 𝒙𝒙+𝑮𝑮)
 , D < 0 

G = (𝒅𝒅𝒙𝒙 −  𝟏𝟏
𝒄𝒄
) 

It can be shown that the inner equilibrium point, when only one exists and it occurs to the right 
of the x-isocline maximum, is stable - a stable node or a stable focus, depending on the values 
of the ingoing parameters (figure B1). 
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Figure B1 

 
Figure B2 

 
 

When two possible inner points exist, typically one is stable and the other unstable (figure B2). 
Figure B3 shows the typical distribution of the equilibrium types. It must be notes that also 
unstable nodes or unstable focus may exist, if both prey and predator stocks are low (B3). The 
x and y-isoclines shown in figure B3 indicate just one of many possible locations. 
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Figur B3 

 

Figur B4 
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5. Bionomic equilibrium 

The inner equilibrium ( )0,0 , yx  varies when the fishing mortalities of the two species varies. It 

is – initially – assumed that the species are caught jointly by one fleet, i.e. that equation (4) and 
(5) are given by: 

x = xEqydxbax xxxx ⋅−⋅−⋅− )(    = 0     

y = yEq
xc

y
ybay y

y
yy ⋅−

⋅
−⋅−

2

)(  = 0  

Where qx, qy are the catchability coefficients. 

Thus when there is an inner equilibrium point, the corresponding equilibrium effort is given 
by: 

0

00

0

00

xcq
y

q
yb

q
a

E

xq
yd

q
xb

q
a

E

yyy

y

y

y

x

x

x

x

x

x

⋅
−−=

⋅
−−=

                       (B19) 

Equating the two parts of equation (19) therefore the equilibrium point as the relationship 
between 0x  and 0y  is given by: 

x

x

x

x

y

y

x

x

yyy

y

q
xb

q
a

q
a

xq
d

xcqq
b

y 0

00
0 )1( +−=

⋅
−

⋅
+   

𝒚𝒚𝟎𝟎 =
x

x

x

x

y

y

q
xb

q
a

q
a 0+−

00

1
xq

d
xcqq

b

x

x

yyy

y

⋅
−

⋅
+

                        (B20) 

A bit of manipulation shows that y0 is given by: 

𝒚𝒚𝟎𝟎 =
)( 00 xBAx +

DxC +0

                        (B21) 

where: 

x

x

y

y

q
a

q
a

A −=  

x

x

q
b

B =  
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y

y

q
b

C =  

x

x

yy q
d

qc
D −=

1  

Bionomic equilibrium is obtained when the profit π is zero whilst the two stocks are in 
equilibrium. The profit is – simplified – given by: 

EcyEqpxEqp yyxx ⋅−⋅⋅⋅+⋅⋅⋅=π                        (B22) 

π is non-trivially zero when: 

x
qp
qp

qp
cy

yy

xx

yy

⋅
⋅
⋅

−
⋅

=                         (B23) 

 

Hence, setting (20) equal to (23) and a bit of manipulation gives the following conditions for 
a bionomic equilibrium: 

𝑥𝑥02�cy𝑞𝑞𝑥𝑥2𝑏𝑏𝑦𝑦px + bxpycyqy2� + 𝑥𝑥0 �𝑝𝑝𝑥𝑥𝑞𝑞𝑥𝑥2 + 𝑐𝑐𝑦𝑦𝑞𝑞𝑥𝑥𝑝𝑝𝑦𝑦 𝑎𝑎𝑦𝑦𝑞𝑞𝑦𝑦 − 𝑞𝑞𝑥𝑥𝑐𝑐𝑏𝑏𝑦𝑦𝑐𝑐𝑦𝑦  − 𝑞𝑞𝑥𝑥 𝑝𝑝𝑦𝑦𝑞𝑞𝑦𝑦2𝑐𝑐𝑦𝑦 −
𝑑𝑑𝑥𝑥𝑝𝑝𝑥𝑥𝑞𝑞𝑥𝑥𝑞𝑞𝑦𝑦𝑐𝑐𝑦𝑦�  + c�𝑑𝑑𝑥𝑥𝑞𝑞𝑦𝑦𝑐𝑐𝑦𝑦 + 𝑞𝑞𝑥𝑥� = 0     (B24) 

Jointly with (20) for determination of 𝑦𝑦0. 
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Appendix C. Numerical model 
The numerical model is based on the predator-prey model of section 3.2 and appendix B, hence 
one predator, y, eating one prey, x. In addition as explained in section 3.3 there can be a 3rd 
species, either a top predator, ztp, preying on both other species and one forage specie, zfs, which 
is eaten by both the prey and the predator. The parameters, a and b determines recruitment and 
natural mortality for the individual species, while c and d denotes the mortality rates inflicted 
by the species on each other. The biomasses are determined as: 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛(𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑥𝑥 ∙ 𝑥𝑥𝑛𝑛) − 𝑑𝑑𝑥𝑥𝑥𝑥 ∙ 𝑦𝑦𝑛𝑛 − 𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑛𝑛2

𝑐𝑐𝑥𝑥𝑥𝑥 𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓
− 𝐹𝐹𝑥𝑥 ∙ 𝑥𝑥𝑛𝑛 (C1) 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 𝑦𝑦𝑛𝑛(𝑎𝑎𝑦𝑦 − 𝑏𝑏𝑦𝑦 ∙ 𝑦𝑦𝑛𝑛) − 𝑑𝑑𝑦𝑦𝑧𝑧𝑡𝑡𝑡𝑡 ∙ 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 −
𝑦𝑦𝑛𝑛2

𝑐𝑐𝑦𝑦𝑦𝑦∙𝑥𝑥𝑛𝑛+𝑐𝑐𝑦𝑦𝑦𝑦𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓
− 𝐹𝐹𝑦𝑦 ∙ 𝑦𝑦𝑛𝑛 (C2) 

𝑧𝑧𝑓𝑓𝑓𝑓 𝑛𝑛+1 = 𝑧𝑧𝑓𝑓𝑓𝑓 𝑛𝑛 +  𝑧𝑧𝑓𝑓𝑓𝑓 𝑛𝑛(𝑎𝑎𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧 ∙ 𝑧𝑧𝑓𝑓𝑓𝑓 𝑛𝑛) − 𝑑𝑑𝑧𝑧𝑧𝑧 ∙ 𝑥𝑥𝑛𝑛  − 𝑑𝑑𝑧𝑧𝑧𝑧 ∙ 𝑦𝑦𝑛𝑛  (C3) 

𝑧𝑧𝑡𝑡𝑡𝑡 𝑛𝑛+1 = 𝑧𝑧𝑡𝑡𝑡𝑡 𝑛𝑛 + 𝑧𝑧𝑡𝑡𝑡𝑡 𝑛𝑛�𝑎𝑎𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧 ∙ 𝑧𝑧𝑡𝑡𝑡𝑡 𝑛𝑛� −
𝑧𝑧𝑛𝑛2

𝑐𝑐𝑧𝑧𝑧𝑧𝑥𝑥𝑛𝑛+𝑐𝑐𝑧𝑧𝑧𝑧∙𝑦𝑦𝑛𝑛
  (C4) 

The 3rd species as well as interactions between the predator and prey species can be turned off 
in order to analyse the species as a set of independent species. 

In the economic part of the model, revenue and costs are determined by equations (C5-23). 
Here q represents catchability rates and V effort, while F is the fishing mortality rate. Harvest 
is denoted by H, and revenue R is found using a set of prices p. Total cost, U, are assumed to 
be linear in effort. Profit π is used as decision variable in optimizations and to determine 
investments in dynamic simulations. Investment is assumed to be linear in profit (thus positive 
profits gives positive investment, i.e. increase in effort while negative profit means negative 
investment, i.e. decrease in effort) and is represented by I. dc1,2 and vx,y,z represent damage from 
fleet 1 and fleet 2 and non-market values respectively.  

𝐹𝐹𝑥𝑥 = 𝑞𝑞𝑥𝑥,1𝑉𝑉1 + 𝑞𝑞𝑥𝑥,2𝑉𝑉2     (C5) 

𝐹𝐹𝑦𝑦 = 𝑞𝑞𝑦𝑦,1𝑉𝑉1 + 𝑞𝑞𝑦𝑦,2𝑉𝑉2     (C6) 

𝐻𝐻𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑥𝑥      (C7) 

𝐻𝐻𝑦𝑦 = 𝐹𝐹𝑦𝑦𝑦𝑦      (C8) 

𝑅𝑅1 = 𝑝𝑝𝑥𝑥,1𝑞𝑞𝑥𝑥,1𝑉𝑉1 + 𝑝𝑝𝑦𝑦,1𝑞𝑞𝑦𝑦,1𝑉𝑉1    (C9) 

𝑅𝑅2 = 𝑝𝑝𝑥𝑥,2𝑞𝑞𝑥𝑥,2𝑉𝑉2 + 𝑝𝑝𝑦𝑦,2𝑞𝑞𝑦𝑦,2𝑉𝑉2    (C10) 

𝑈𝑈1 = 𝑢𝑢1𝑉𝑉1      (C11) 

𝑈𝑈2 = 𝑢𝑢2𝑉𝑉2      (C12) 

𝜋𝜋1 = 𝑅𝑅1 − 𝑢𝑢1𝑉𝑉1     (C13) 

𝜋𝜋2 = 𝑅𝑅2 − 𝑢𝑢2𝑉𝑉2     (C14) 

𝐼𝐼1 = 𝑣𝑣1𝜋𝜋1      (C15) 

𝐼𝐼2 = 𝑣𝑣2𝜋𝜋2      (C16) 
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𝑉𝑉1,𝑡𝑡+1 = 𝐼𝐼1,𝑡𝑡 + 𝑉𝑉1,𝑡𝑡     (C17) 

𝑉𝑉2,𝑡𝑡+1 = 𝐼𝐼2,𝑡𝑡 + 𝑉𝑉2,𝑡𝑡     (C18) 

𝑑𝑑𝑑𝑑1  = 𝑘𝑘1𝑉𝑉1
𝑙𝑙1      (C19) 

𝑑𝑑𝑑𝑑2  = 𝑘𝑘2𝑉𝑉2
𝑙𝑙2      (C20) 

𝑣𝑣𝑥𝑥 =  𝑠𝑠𝑥𝑥 𝑥𝑥𝑟𝑟𝑥𝑥       (C21) 

𝑣𝑣𝑦𝑦 =  𝑠𝑠𝑦𝑦 𝑦𝑦𝑟𝑟𝑦𝑦       (C22) 

𝑣𝑣𝑧𝑧 =  𝑠𝑠𝑧𝑧 𝑧𝑧𝑟𝑟𝑧𝑧       (C23) 

k, l, s and r are constants as explained in section 2. 
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