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Abstract 

In this article we quantify the marginal external effects of nearby land based wind turbines on 
property prices capitalized through traded residential properties located within 2,500 meters 
or less. We succeed in separating the effect of noise and visual pollution from wind turbines. 
This was achieved by using a dataset covering 21 municipalities and consisting of 12,640 
traded residential properties sold in the period 2000-2011. We model the hedonic price 
function in two steps. First we detrend data across municipalities using a pooled cross 
sectional model which allows for different price trends across municipalities. Second we 
control for spatial autocorrelation by using explicit spatial models. Properties affected by 
noise and visual pollution from wind turbines are identified using Geographical Information 
Systems. Our results show that wind turbines have a significant negative impact on the price 
schedule of neighboring residential properties. The visual pollution accounts for 3.15% of the 
residential sales price. The price premium declines with distance by about 0.242% of the 
sales price for every 100 meters. The effect of noise depends on the noise level emitted and 
ranges from 3% to 7% of the sale price for residential properties.  

 
Keywords:  
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Highlights  

We estimate the negative impact of visual and noise pollution from wind turbines. 

We construct viewsheds based high resolution digital surface model. 

We estimate the hedonic price model using spatial autoregressive models.   
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1. Introduction  

In the 16th century, the fictional character Don Quijote thought that windmills were alien to 
the landscape. Many people have similar views about wind turbines today. The installation of 
land based wind turbines is controversial and is often met with opposition from the local 
community (Wolsink 2000), which often takes the form of a “Not in my back yard” argument. 
The general need to increase renewable energy, and install wind turbines in particular, is 
acknowledged, but at the same time the location of local wind turbine projects is opposed. 

The noise and visual appearance of wind turbines makes them very unattractive neighbors 
(Devine-Wright 2005). The stated preference literature has shown that people in general have 
a positive attitude towards wind turbines (Borchers et al. 2007), while they at the same time 
are able to put a value on the negative externalities related to noise and visual pollution 
(Ladenburg 2009; Meyerhoff et al. 2010; Ladenburg and Möller 2011). The stated preference 
results are compelling, but a number of questions follow in their wake. For example, when 
respondents have to relate to a hypothetical scenario, are they cognitively able to distinguish 
between their opinions on noise and visual pollution? If not, are conclusions based on 
hypothetical payments as reliable as results based on observed, actual payments? (Diamond 
and Hausman 1994).  

The externalities related to wind turbines are restricted to local residents, which makes the 
hedonic house price method the obvious valuation technique to choose. Only a handful of 
hedonic studies have attempted to estimate the local negative impacts of wind turbines and 
only the most recent publications have succeeded (Sims and Dent 2007; Sims et al. 2008; 
Hoen et al. 2011; Heintzelman and Tuttle 2012). Heintzelman and Tuttle (2012) find that 
nearby wind facilities significantly reduce property values. Their results show that property 
prices are reduced by between 8.8 % and 14.87 % at a distance of 0.5 miles to the nearest 
turbine. They use proximity to wind turbines as a proxy for noise and visual pollution. While 
both noise and visual pollution from wind turbines is correlated with proximity, they have a 
dissimilar impact and spatial extent. As such, proximity seems to be a rough generalization of 
the externalities related to wind turbines, which implies that the result of Heintzelman and 
Tuttle (2012) should be interpreted with caution.  

While only two hedonic studies have demonstrated that wind turbines have an impact – this 
study included – hedonic house price valuation has been used with success on numerous 
other externalities, e.g. noise pollution from traffic, having a nice view of, or access to, green 
spaces (Day et al. 2007; Sander and Polasky 2009; Zhou et al. 2013). The hedonic literature 
on road traffic has treated the related externalities much the same way as wind turbines have 
been treated in this study, by explicitly controlling for both view and noise in the hedonic 
model. Two examples are Lake et al. (1998) and Bateman et al. (2001). By working with 
Geographical Information Systems (GIS), the authors were able to estimate noise and view 
variables for each house in their sample. Their conclusions are broadly similar in that noise 
and visual pollution from larger roads are reflected in property prices as two different 
negative impacts.  

The main contribution of this study is the provision of separate estimates of both the noise 
and visual pollution from wind turbines. We construct viewsheds based on a high resolution 
Digital Surface Model (DSM), which enables us to identify properties where wind turbines 
are visible. Noise pollution is calculated for each wind turbine based on noise level 
measurements emitted at hub height, distance to the wind turbine, landscape-properties and 
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air absorption under optimal conditions. In total, 12,640 transactions of house sales are 
included in the model, which ensured a reasonable variation in the variables of interest.  

2. Methods 

2.1 Modeling visual pollution  

Visual pollution from wind turbines is a unified effect, but it can be subdivided into several 
negative effects with different causes, spatial extents and perhaps impacts (Hoen et al. 2011). 
Wind turbines in the open landscape can make the area appear more developed and less rural 
or less authentic. The general perception of an area can be degraded as can a location with a 
scenic view. In addition, wind turbines add movement to the landscape which attracts 
attention and reduces the experience of tranquility and peacefulness, which would otherwise 
be gained from a rural landscape. The rotating wings of a wind turbine reflect the sun 
creating flickers of light, which again attracts attention and adds to the nuisance from the 
movement effect. The last visual effect is shadow-flicker. When the wings rotate, they cast a 
moving shadow, which in turn causes flickers of shadow in the immediate surroundings of 
the wind turbines.  

In order to experience a visual effect caused by turbines, one needs to be able to see at least a 
part of a turbine. Properties with a view of one or more turbines were identified by 
constructing viewsheds for each of the wind turbines in the survey areas at hub height. The 
viewshed was based on a high resolution Digital Surface Model (DSM) consisting of 1.6 x1.6 
meter cell. The DSM accounts for terrain and obstacles such as buildings, vegetation, forests 
and so forth. Houses were identified as having a view of a turbine if at least one of the 
corners of the building two meters above terrain was located within the estimated viewshed 
of a wind turbine. In total, 33% of the houses in the analysis had a view of a wind turbine.         

We captured visual pollution in our model by a dummy variable which indicates whether a 
turbine can be seen from the property and by an interaction term between the dummy variable 
and the distance to the nearest wind turbine. The specification implies that having a view of a 
turbine provides a negative impact and that the impact decreases as distance to the turbine 
increases. We assume that the combined negative externalities of the visual pollution of wind 
turbines are captured by this specification.   
   
 
2.2 Noise pollution 
 
Noise from wind turbines stems from three sources; when the wings pass the tower, when the 
wings cut through the air and from the mechanics of the turbine. Noise emitted from a turbine 
is not constant. Some of the noise is tonal and some is low frequency (Møller et al. 2010). 
The composition of the noise affects how the sound is experienced which is different to how 
constant noise sources, such as noise from highways, are experienced.  
The noise level emissions were calculated for each wind turbine based on how much noise a 
turbine emits in the case of optimal conditions for noise production and noise travel distance. 
Noise was calculated based on equation (1) which is provided by the Danish legislation in 
statute on noise from turbines (Environmental Protection Agency 2011). The equation 
describes the noise level emitted from a wind turbine at a given distance measured in decibels 
(dB).     
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awa LdBdBhlLSPL Δ−+−+−= 5,111)log(*10 22     (1) 

Where waL is the sound pressure from the wind turbine provide by the Windpro database 
(EMD International A/S 2012), l is the distance to the turbine, h is the hub-height, the 11dB 
is a distance correction constant, 1.5 dB is a terrain correction constant assuming a rural 
landscape. The air absorption, alΔ , is calculated at by the following equation:  

)(
1000

2 22 hlla +=Δ           (2) 

Noise levels were divided into noise zones (Table 1). Properties located within these noise 
zones were identified by simple overlay analysis in GIS. No house was found to be located 
within a noise zone above 50 dB and the majority of houses in the survey area were located 
within the noise zone 20-29 dB. Note that a level below 20 dB is generally perceived as 
silence (Pedersen and Waya 2004). 

TABLE 1 THE DISTRIBUTION OF OBSERVATIONS ACROSS NOISE GROUPS 

Noise level 
<20 
dB 

20-29 
dB 

30-39 
dB 

40-50  
dB 

     
Affected properties 

(%) 
4077 
(32) 

7532 
(60) 

879 
(7) 

152 
(1) 

 

Equation (1) does not account for tonal or low frequency noise, which may affect the 
perception of experienced noise. Furthermore it does not account for the multiplication effect 
of noise-exposure to several wind turbines. Two turbines emit more noise than one. If a house 
was affected by more than one wind turbine the house was assigned the highest noise 
calculation. In addition the perception of noise may depend on the background noise. The 
experience of noise emitted from a turbine in a quiet environment is likely to be perceived 
differently from a noisy environment with other external noise sources such as highways or 
railways. The noise calculation does not include other sources of noise.  However, such 
negative externalities are accounted for in the hedonic price model (Table 2).      

2.3 Theory 

The theoretical foundation for the hedonic valuation method stems from Rosen’s (1974) 
seminal paper which demonstrated that buyers and sellers of houses in a perfectly 
competitive market will reach a market equilibrium guided by the implicit prices of house 
characteristics. Rosen argues that household buyers seek to maximize utility by bidding as 
little as possible for every single house (defined by its characteristics) while household sellers 
seek to maximize capital rent by offering their house for the highest price possible. The 
equilibrium price schedule for house characteristics forms where the bid and offer functions 
meet. In equilibrium, the price P of any given house, n, can be modelled as a function of a 
vector z that includes all K house characteristics, zik, is: 

);,...,...,( 1 Θ= nKnknn zzzfP ,       (3) 
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Where Θ is a set of parameters related to the characteristics and specific to the housing 
market considered. Note that the characteristics may also include environmental amenities 
and disamenities obtained by ownership of the house, which here relates to whether or not the 
property is exposed to visual or noise pollution from wind turbines. Assuming weak 
separability with respect to the parameters of interest ensures that the marginal rate of 
substitution between any two characteristics is independent of the level of all other 
characteristics. With that assumption in place, the implicit price of a house characteristic zk is 
its market price and is also a measure of its associated Marginal Willingness To Pay (MWTP) 
(Palmquist, 1991)   .  

In optimum, the household MWTP will equate to the household marginal rate of substitution 
between the price of the house characteristic zk and a composite numeraire good, comprising 
all other goods. Hence, the slope of the hedonic price function for a given house 
characteristic zk can be recognized as the MWTP for house characteristic zk. 

nk

n
n dz

dPMWTP =         (4) 

This allows us to calculate the value of a marginal change in the environmental good also 
known as the 1st stage of the hedonic model. From a policy perspective, it can be argued that 
the value of such a marginal change in amenity values is seldom a crucial piece of 
information. The reason is that the hedonic price function only provides information on one 
point on the households’ demand function with respect to the environmental good in question 
– not the demand schedule for that good which would be the result of undertaking 2nd stage of 
the hedonic model. Nevertheless, results from 1st stage models are the most reported results 
in the hedonic literature (Palmquist, 2005)    . The main problem in reaching the 2nd stage is 
to come up with appropriate instruments to handle the inherit endogeneity which arises when 
households both choose the amount and the price of the house characteristics.   

2.4 The model 

The hedonic house price model is estimated in two steps. In the first step, the sales prices are 
detrended using a cross-pooled regression model which allows for different prices across 
years and municipalities using 2011 as the reference year. The error term of the cross-pooled 
regression consists of logged sales prices detrended in time and space. In the second step, the 
hedonic price model is estimated using a simple non-spatial OLS model and two explicit 
spatial models based on a Generalized Method of Moments (GMM) estimator developed by 
Kelejian and  Prucha (2010). The spatial models consist of a Spatial Error Model (SEM) and 
a spatial autoregressive model with a spatial autoregressive error term (SARAR). The two 
step approach is required because spatial models are not able to identify highly correlated 
variables, such as the correlation between the interaction term, the municipalities and the year 
dummies in equation 5.      

The cross-pooled model which corrects for differences in prices over municipalities and years 
can be written as follow:   

μββββ ++++= tymunicipaliyearyeartymunicipaliP *)ln( 3210   (5) 
 
Where ln(P) is logged property prices, 1β  is a vector of the parameter estimates for the  
dummy variables referring to municipalities, 2β is a vector of the parameter estimates over 
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the 11 year period. 3β  is a vector of parameter estimates of the interaction terms between the 
municipalities and years. μ is the error term of the model which, essentially, consists of the 
logged detrended price and an error term consisting of unexplained noise.  

 
The hedonic house price model is estimated using the logged detrended prices supplied by 
Equation 5. The full hedonic SARAR model can be written as follows.  
 

εθθθθμρμ +++++= 4321 * noisedisviewviewZW     (6) 

uW += ελε                     (7) 

Where 1θ is a vector of coefficient estimates of the control variables presented in table 2, 2θ is 
the coefficient estimate of the dummy variable of having a view, 3θ is the coefficient estimate 
of the interaction term between the view and distance to nearest wind turbine, 4θ represents 
the coefficient estimates of being within one of the noise zones using <20dB as reference 
zone. W is a row standardized N*N spatial weight matrix based on the 10 nearest neighbors. 
The terms ρ and λ are the spatial autoregressive coefficients also known as the spatial lag 
term and the spatial error term respectively. The hedonic model is estimated using an (non-
spatial) OLS model, where both ρ and λ are assumed to be zero, a spatial error model, where 
ρ is assumed to be zero and λ  non-zero, and finally as a SARAR, where ρ and λ are 
assumed to be non-zero. The objective of the application of the spatial models is to provide 
consistent and efficient parameter estimates that are robust to model specifications and 
unobserved spatially correlated variables.     

The spatial lag term ρ implies that there is a spillover effect between house prices of 
neighboring properties. Lesage and  Fischer (2008) distinguish between average direct, 
indirect and total impacts, depending on whether one looks solely at the estimated coefficient 
or accounts for neighboring observations. From Won Kim et al. (2003), the marginal price of 
a housing characteristic (total impact) becomes: 

1)( −−= WI
dz
d

k
k

ρθμ
        (8) 

Where, I is an identity matrix. The direct effect can be interpreted in the same way as a 
standard regression coefficient estimate while the indirect effect depends on the defined 
neighbors in the spatial weight matrix. The model suggests a marginal change will set off a 
ripple effect through the housing market affecting neighbors and their neighbors and so forth. 

We believe that the indirect spillover effect represented by the autoregressive lag term ρ can 
be interpreted as an information effect. If buyers and sellers are unsure of the appropriate 
value of a property given its characteristics, they may infer the appropriate price by looking 
at nearby properties with similar characteristics. The information contained in previous 
transactions in the same area may also allow the household to form expectations about the 
future evolution of the prices in the area. Alternatively the lagged dependent variable is likely 
to be a proxy for unobserved characteristics. In either case, the spill-over effect should be 
disregarded in the interpretation of the MWTP in hedonic house price models, as it does not 
reflect the preference of buyers.   
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3. Data  

In total, the analysis contains 12,640 sales of single-family houses sold over a 12 year period 
starting from 2000 to 2011. During this period, several turbines were built. Property prices 
prior to turbine construction were modeled as if the property was not exposed to any 
externality related to turbines.  

Data also contain information on the structural characteristics of the property such as number 
of rooms, size of the living area, etc. This information was extracted from the Danish 
Registry of Buildings and Housing database (Ministry of Housing Urban and Rural Affairs 
2012). The registry also contains information on the exact coordinates of the location of each 
house. Proximi1ty variables to environmental externalities were calculated for each property 
using ArcGIS Desktop 10.1. The proximity measures are proxies for view, accessibility, etc. 
To remove possible border problems, all spatial externalities less than 5.5 kilometres from the 
border of the survey areas were included in the calculation of spatial variables. Spatial data 
were supplied by the “Danish National Survey and Cadastre” from the spatial database 
Kort10 (KMS 2001). A summary of the control variables applied in the model is presented in 
Table 2.  

TABLE 2 OVERVIEW OF CONTROL VARIABLES IN THE MODEL 

Structural variables 
Number of floors Number of rooms Brick Tile roof  Renovation 1970s 
Basement size Number of toilets  Flat roof Cement roof Renovation 1980s 
Size of living area Number of baths Age Fibre Roof Renovation 1990s 
Attic space Low basement Detached house Board roof  Renovation 2000s 

Environmental variables 
Forest Coastal line Highway 
Lake  Urban zone  Large road 

 

Data on wind turbines were provided by the Danish Energy Agency (2012) and include the 
geocoded location of the wind turbines, hub height, total height and rotor diameter. Noise 
data for each wind turbine were supplied by the database from the planning program 
WindPro 2.8 which includes reported noise date from the manufactures (EMD International 
A/S 2012). The viewshed of each wind turbine was constructed based on a DSM which 
consists of 1.6 x 1.6 meter cells. Each cell contains the average height of the surface which is 
defined as ground surface including obstacles relevant to the viewshed such as buildings, 
fences, forest, etc. A more detailed description of the properties of DST can be found in 
Heywood et al. (2006). The DST was supplied by COWI (2009).   

4. Survey area 

The survey consists of 24 spatially detached sub-survey areas which, combined, cover 647 
km2, 20 municipalities and 55,864 houses in Denmark.  The sub-survey areas are located in a 
rural environment characterized by fields, small villages and towns.   

The main criterion for selection of the survey areas was that they have as many transactions 
as possible within a primarily 600 meter and secondarily a 2,500 meter radius of the nearest 
wind turbine. The selection criterion resulted in a rather dispersed study area as illustrated in 
figure 1. The survey areas were identified using GIS and assessed manually using high 
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resolution aerial photos. Each survey area has a radius of 2.5 kilometres to the nearest wind 
turbine, which ensures that the exposure to the wind turbine externality varies between being 
exposed to non-exposed.  

 

Figure 1: Map of Denmark showing the spatial distribution of study areas 

5. Results 

The results of the model estimations are presented in table 3 for wind turbine externalities 
and relevant model tests. Model estimates, which include all control variables, are provided 
in appendix B. The estimates of wind turbine externalities vary only marginally between 
models and are significant at the 5% level except for the view variable in the SEM model and 
the 39-50 dB noise zone in the OLS model, which are both significant at the 10 % level. All 
three models are robust to heteroscedasticity. The non-spatial model is estimated using OLS 
with heteroscedasticity-consistent standard errors. The two spatial models are estimated using 
the Generalized Method of Moments estimator (GMM) with innovations robust to 
heteroscedasticity, see e.g. Piras (2010) for an elaboration.   

Having a view of a wind turbine from your house results in a considerable reduction in the 
price schedule of the house. The effect of the view of a wind turbine decreases as distance to 
the turbine increases. The models predict that a house located within one of the noise zones 
has a discrete impact on the sales price. The negative impact of the noise zone is positively 
related to the noise level.   

The spatial autoregressive terms in the SEM model and the SARAR model are highly 
significant, which indicates that the two models adjust for spatial autocorrelation. Adjusted 
R2 is calculated for the three models. The SARAR model has a considerable higher adjusted 
R2 than either of the other models. This indicates that the lag term in the SARAR model 
improves model performance. 
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Global Moran’s I value is calculated for the residuals for each of the models based on a row 
standardized spatial weight matrix, which includes the 10 nearest neighbors. The global 
Moran’s I test indicates that all three models suffer from spatial autocorrelation, as the 
residuals have a significant spatial structure which is different from a random spatial 
distribution.  

Spatial dependence of the residuals of the OLS models was tested using Langragian 
multiplier statistics. The term robust in the LM-error and LM-lag (in Table 3) indicates that it 
tests for one type of dependence under the assumption that the other is present (Anselin et al. 
1996). The Langragian multiplier tests are significant for both an error term and lag term. The 
error term is the most important of the two terms. In the SARAR model, both autoregressive 
terms are included.    

 

TABLE 3 MODEL ESTIMATION OF TURBINE EXTERNALITIES  
 
Variable OLS SEM SARAR 
View  -0.0168

(0.0134)
*** -0.0315 

(0.0172)
. -0.0397 

(0.0154)
** 

View*distance 6.99E-05
(8.42E-06)

*** 2.42E-05
(1.06E-05)

* 2.78-05
(9.55E-06)

** 

20-30dB -0.0368
(0.0056)

*** -0.0306
(0.0101)

** -0.0255
(0.0079)

** 

30-39dB -0.0512
(0.0129)

*** -0.0551
(0.0189)

** -0.0442
(0.0151)

** 

39-50dB -0.0432
(0.0256)

. -0.06692
(0.0272)

* -0.0509
(0.0247)

* 

λ – error term  0.6004 
(0.0195)

*** 0.4412
(0.0253)

*** 

ρ – lag term   0.2677
(0.0253)

*** 

    
WALD statistics 
( h1:λ= ρ=0) 

  1538.4*** 

Adjusted R2 0.3794 0.3704 0.4492 
Global Moran’s I  0.2553*** 0.2776*** 0.1367*** 
LM-error 4629.275***     
LM-lag 3220.362***     
Robust LM-error 1468.492***     
Robust LM-lag 59.576***     
N= 12,640, 12,581 degrees of freedom. Standard errors are indicated under estimates in parentheses. 
*** significant at 0,1%, ** significant at 1%, * significant at 5%, . Significant at 10 % a)  
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6. Model interpretation 

The marginal implicit price of the hedonic price function is presented in table 3. The price-
functions are all log-linear, thus the marginal changes represent the relative change in house 
price. Table 4 contains both a marginal willingness to pay in relative and absolute prices 
based on the average sales price in 2011 in the survey areas. The table is based on the 
estimates of the SEM model. The lag term in the SARAR model implicates a spill-over effect 
which may be an information effect. Such an effect would be inappropriate to account for in 
the interpretation of the estimates of the hedonic house price model. Given the ambiguous 
interpretation of the lag term in the SARAR model, we choose to present and interpret the 
estimates of the SEM model (see also section 2.4). 

The noise and visual pollution of wind turbines have a considerable impact on local residents. 
The hedonic house price models predict that in severe cases roughly 10 % of the sales price 
can be explained by exposure to noise and visual pollution from wind turbines. The impact of 
turbine noise on the immediate surroundings can be explained by 6.69 % of the house price in 
highly exposed areas. The marginal willingness to pay doubles from the low noise zone 20-
30 dB to the high noise zone of 39-50 dB. The visual pollution of a wind turbine can explain 
-3.15 % of the house price. Starting from the base of the wind turbine, the price increases by 
0.00242 % for each meter away from the turbine for houses which have a view. The 
specification of the hedonic model indicates that having a view of a wind turbine is negative. 
However, the negative visual impact of the turbine reduces with distance.      

The results are in line with the findings of the only other successful hedonic article on the 
negative impact of wind turbines. Heintzelman and  Tuttle (2012) find a depression in 
property price between 8.80% and 14.49% within a radius of 0.5 miles to the nearest turbine. 
Our results indicate that prices drop by between 10.31% and 13.94% under similar 
circumstances depending on the level of noise exposure.  

TABLE 4. MARGINAL IMPLICIT WILLINGNESS TO PAY ESTIMATES   
   

Parameter % of the house price Average MWTP (EUR) 
View (dummy) -3.15 % -6,233 
View*distance (per 100 meter) 0.242% 479 
20-29 dB (dummy) -3.06% -6,055 
30-39 dB (dummy) -5.51 % -10,904 
40-50 dB (dummy) -6.69% -13,239 

7. Conclusion 

In this paper we succeeded in separating and identifying the visual and audible externalities 
arising from wind turbines. We identified a negative price premium of around 3.15% of the 
sales price for having a view of at least one wind turbine. The price premium declines as 
distance to the turbine increases at a rate of 0.242% of the sales price per 100 meters. 
Furthermore, we find that noise provides an additional negative price premium, which in 
terms of impact mirrors that of having a view. Approximately 3% to 7% of the sales price can 
be explained by the exposure to noise. 

The effect of view and distance changes to a positive externality at around 1,300 meters. Use 
of a specification of the turbine distance which allowed for a non-constant effect may have 
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been more appropriate. On the other hand, the variable might capture the duality of the wind 
turbine in the rural landscape. While a turbine in the immediate surroundings is experienced 
as a negative externality, a wind turbine on the horizon may be a reminder of sustainable 
energy production and be perceived positively. The public in general is positive towards 
wind-energy although they dislike having it as a neighbor (Devine-Wright 2005). As such, 
the specification may capture both the ‘not in my back yard’ aspect and the general positive 
attitude towards wind energy. Another interpretation might simply be that properties with a 
view of a turbine which is 1,300 meters or more away have a view - which in itself is positive.  

The results presented in this article can be applied in cost-benefit analysis especially because 
we succeed in modeling view and noise as two separate parameters. Note that the results of 
the hedonic house price model only represent marginal willingness to pay and that such 
results will not usually be used in scenarios with non-marginal changes. Still, Bartik (1988) 
argues that the estimates of non-marginal localized changes based on the hedonic house price 
model can be used as estimates of benefits or costs, given that the non-marginal change is 
restricted to a local area, thus not affecting the global housing market. We regard setting up a 
wind turbine in the landscape to be both non-marginal and localized. Based on this 
assumption, our results are directly applicable in the planning process and could be used to 
compensate those living close to wind turbines, or as part of a welfare economic cost-benefit 
analysis that includes the negative effects of noise and visual pollution.     

In the analyses we do not account for a possible accumulation effect of wind turbines. The 
effect of having one wind turbine as opposed to having several turbines or an entire wind 
farm may be very different. We only account for the nearest turbine and disregard a possible 
accumulation effect. In addition, information on manufacture and turbine production capacity 
has been ignored. Such information might have provided further relevant results.      

The analysis covers a large number of spatially detached areas. Recall that the hedonic price 
schedule is assumed to be generated in an equilibrium market. We essentially assume that the 
supply and preference structure are stable across the spatially detached areas and recognize 
that this might not be a fully valid assumption. Parameter estimates of noise and view 
between municipalities in the survey areas were tested by an ANOVA test. Based on this, we 
cannot reject that parameter estimates between municipalities are different. Previous hedonic 
studies on wind turbines have very likely suffered from lack of spatial variation due to a 
small dataset (Heintzelman and Tuttle 2012). The number of survey areas chosen in this 
analysis ensures a reasonable variation in the wind turbine variables.  

Neither of the model estimations fully resolves the problem of spatial autocorrelation. Both 
explicit spatial models retain a significant spatial structure in the error term. This indicates 
that the models still suffer from omitted spatial processes such as misspecification of the 
functional form, mis-measurement of spatial covariates or from omitted spatial covariates. If 
the omitted spatial processes are not correlated with the turbine variables, the estimate of the 
impact of wind turbines remains trustworthy. In addition, the model estimates are robust 
across models.  

We conclude that noise and visual pollution from wind turbines have a considerable impact 
on nearby residential properties. When Don Quijote was tilting at windmills he was fighting 
imaginary giants. At present, wind turbines are a symbol of sustainable energy, the way of 
the future. However, local residents who live in close proximity to these sustainable giants 
experience some very real negative externalities in the form of noise and visual pollution.  
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Appendix A.1 Descriptive statistics   
 

TABLE A1 DESCRIPTIVE STATISTICS FOR DUMMY VARIABLES   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Name Description Mean Observations =1 
Brick  House build in bricks 0.9158 13592 
Flat roof Flat roof 0.0244 362 
Cement roof Cement roof 0.1979 2937 
Fibre roof Fibre roof 0.4445 6597 
Board roof Board roof 0.0268 398 
Tile roof Tile roof 0.2778 4123 
Lower basement Lower basement 0.0912 1354 
Detached house The property is a detached house 0.8213 12189 
Renovation 1970s House rebuilt between 1970-1979 0.1113 1652 
Renovation 1980s House rebuilt between 1980-1989 0.0703 1044 
Renovation 1990s House rebuilt between 1990-1999 0.0551 817 
Renovation 2000s House rebuilt between 2000-2009 0.0701 1041 

<20 dB 
Within a zone where a turbine makes noise <20 
dB 

0.3181 4721 

20-30dB Within a zone where a turbine makes noise 20-30 
dB 

0.5908 8768 

30-39dB Within a zone where a turbine makes noise  30-
39dB 

0.0756 1122 

39-50dB Within a zone where a turbine makes noise  39-
50dB 

0.0151 224 

View At least one turbine is visible 0.3547 5264 
Urban zone House within urban zone or not 0.8117 12047 
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A.2 DESCRIPTIVE STATISTICS FOR NON-DUMMY VARIABLES 

Name Description Mean Min Max 

Price Trade price (not corrected for 
inflation) in KKR 1329000 100000 18150000 

Age Age of the house 1957 1850 2010 

Number of baths Number of bathrooms 1.268 1 4 

Size Size of living area m2 136.5 56 492 

Basement size Size of basement m2 12.19 0 230 

Attic size  Size of attic m2 24.43 0 260 

Number of rooms Number of rooms 4.642 1 16 

Number of floors Number of floors 1.03 1 3 

Number of toilets Number of toilets 1.536 1 5 

Number of bathrooms Number of bathrooms 1.268 1 4 

Forest 

Distance in meters to the nearest 
forest, zero being within forest. 
In the model used as dummy 
variables based on steps of 100 
meters with reference distance 
being above 700 meters.   297.2 0 4294 

Lake 

Distance in meters to the nearest 
lake with a surface greater than 
200m2. In the model used as 
dummy variables based on steps 
of 100 meters with reference 
distance being above 700 meters. 4390 0 10500 (1903) 

Coast line 

Distance in meters to the nearest 
coastal line. In the model used as 
dummy variables based on steps 
of 100 meters with reference 
distance being above 700 meters. 4677 8.022 10500 (2348) 

Highway 

Distance in meters to the nearest 
highway. In the model used as 
dummy variables based on steps 
of 100 meters with reference 
distance being above 1000 
meters. 8297 17.94 10500 (9606) 

Large Road  

Distance in meters to the nearest 
road wider than 6m. In the model 
used as dummy variables based 
on steps of 100 meters with 
reference distance being above 
400 meters. 393.9 2.847 5239 

Distance  
Distance in meters to the nearest 
onshore turbine 1489  68.27 3474 
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Appendix B Model estimation  
 

TABLE B.1 MODEL ESTIMATION  
Variable OLS SEM SARAR 
Intercept 
 

 -4.898 ***   
(0.1764)  

-5.5614 *** 
(0.2496) 

-5.1706 *** 
(0.2193) 

Brick 
 

 0.06860 ***   
(0.009516) 

0.0625 *** 
(0.0102) 

0.0603 *** 
(0.0096) 

Tile roof 
 

0.01563   
(0.01681) 

-0.0069  
(0.0161) 

-0.0042  
(0.0155) 

Cement roof 
 

-0.02654   
(0.01725) 

-0.0300. 
(0.0167) 

-0.0295 . 
(0.0161) 

Fibre roof 
 

-0.1038  ***  
(0.01634) 

-0.0933 *** 
(0.0152) 

-0.0295 . 
 (0.0161) 

Board roof  
 

-0.03898 .   
(0.02218)  

0.0617 ** 
(0.0225) 

-0.0552 * 
(0.0215) 

Flat roof  
 

-0.1393 ***   
(0.02205) 

-0.1312 *** 
(0.0208) 

-0.0552 * 
(0.0215) 

Age  
 

0.001024  ** 
(0.00009) 

0.0014 *** 
(0.0001) 

0.0012 *** 
(0.0001) 

Detached house 
 

  0.01787 *   
(0.007839) 

0.0227 * 
(0.0091) 

0.0080  
(0.0082) 

Number of bathrooms  
 

0.05391  *** 
(0.005847) 

0.0432 *** 
(0.0060) 

0.0420 *** 
(0.0058) 

Low basement  
 

0.01800 *   
 (0.008778) 

0.0228 * 
(0.0091) 

0.0264 ** 
(0.0087) 

Size (log)  
 

0.5547 *** 
(0.01042)  

0.5386 *** 
(0.0109) 

0.5333 *** 
(0.0105) 

Basement Size 
 

 0.0006684 ***  
(0.00009) 

0.0007 *** 
(0.0001) 

0.0008 *** 
(0.0001) 

Renovation 1970s 
 

-0.03566 *** 
  (0.008036) 

-0.0261 *** 
(0.0069) 

-0.0247 *** 
(0.0067) 

Renovation 1980s 
 

 0.006676   
(0.009700)  

0.0069  
(0.0087) 

0.0061  
(0.0085) 

Renovation 1990s 
 

 0.09875   ***   
(0.01092) 

0.0995 *** 
(0.0101) 

0.1032 *** 
(0.0099) 

Renovation 2000s 
 

-0.09579 ***   
(0.01018)  

-0.0930 *** 
(0.0113) 

-0.0924 *** 
(0.0110) 

Urban zone 
 

0.005843   
(0.008138)  

0.0275. 
(0.0163) 

0.0173  
(0.0125) 

Coast 0-100 meters 
 

 0.2965 ***   
(0.03116) 

0.3607 *** 
(0.0477) 

0.2787 *** 
(0.0407) 

Coast 101-200 meters 
 

0.1765 ***   
(0.02071) 

0.2316 *** 
(0.0355) 

0.1613 *** 
(0.0284) 

Coast 201-300 meters 
 

0.1685  ***  
(0.01724) 

0.2309 *** 
(0.0328) 

0.1739 *** 
(0.025) 

Coast 301-400 meters 
 

0.1549 ***   
(0.01627) 

0.1587 *** 
(0.0307) 

0.1262 *** 
(0.0245) 

Coast 401-500 meters 
 

0.1783 ***   
(0.01588) 

0.1427 *** 
(0.0296) 

0.1275 *** 
(0.0236) 

Coast 501-600 meters 
 

0.1090  *** 
(0.01594) 

0.1023 *** 
(0.0302) 

0.0914 *** 
(0.0235) 

Coast 601-700 meters 
 

0.07233  *** 
(0.01.818) 

0.0549 * 
(0.0268) 

0.0488 * 
(0.0227) 

Highway 0-100 meters 
 

-0.4143 **    
(0.1401) 

-0.3882 *** 
(0.1032) 

-0.3927 *** 
(0.1077) 
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Variable OLS SEM SARAR 
Highway 101-200 meters 
 

-0.2169 *  
(0.08812) 

-0.1587. 
(0.0930) 

-0.1388 . 
( 0.0773) 

Highway 201-300 meters 
 

0.1733   
(0.1126) 

0.1137. 
(0.0690) 

0.1196 * 
(0.0567) 

Highway 301-400 meters 
 

-0.001535   
(0.08718) 

-0.0564  
(0.0599) 

-0.0629  
(0.0538) 

Highway 401-500 meters 
 

0.1871 ***   
(0.04459) 

0.1503. 
(0.0817) 

0.1403 * 
(0.0615) 

Highway 501-600 meters 
 

0.1545  **  
(0.04750)  

0.1423 ** 
(0.0451) 

0.1240 ** 
(0.0378) 

Highway 601-700 meters 
 

0.08173 **   
(0.02806) 

0.0724  
(0.0449) 

0.0542  
(0.0344) 

Highway 701-800 meters 
 

0.1393 ***  
0.03007)  

0.1283 *** 
(0.0342) 

0.1080 *** 
(0.0267) 

Highway 801-900 meters 
 

0.09568 **    
(0.03280)  

0.1021 ** 
(0.0328) 

0.0797 ** 
(0.0265) 

Highway 901-1000 meters 
 

0.1141 **   
(0.03714)  

0.0561  
(0.0378) 

0.0505  
(0.0323) 

Forest 0-100 meters 
 

0.1012  ***  
(0.01335)  

0.0953 *** 
(0.0259) 

0.0605 ** 
(0.0198) 

Forest 101-200 meters 
 

 0.08487 ***   
(0.01322)  

0.0806 ** 
(0.0256) 

0.0491 * 
(0.0196) 

Forest 201-300 meters 
 

 0.08442 ***  
(0.01327)  

0.0826 ** 
(0.0257) 

0.0531 ** 
(0.0196) 

Forest 301-400 meters 
 

 0.09466 ***   
(0.01366)  

0.0995 *** 
(0.0262) 

0.0679 *** 
(0.0199) 

Forest 401-500 meters 
 

 0.1067 ***   
(0.01467)  

0.1010 *** 
(0.0271) 

0.0716 *** 
(0.0208) 

Forest 501-600 meters 
 

0.1152 ***  
(0.01666)  

0.0930 ** 
(0.0284) 

0.0709 ** 
(0.0222) 

Forest 601-700 meters 
 

0.09010  *** 
(0.01902)  

0.0712 * 
(0.0287) 

0.0604 * 
(0.0236) 

Lake 0-100 meters  
 

 0.3625 ***  
(0.03402)  

0.3605 *** 
(0.0591) 

0.2606 *** 
(0.0494) 

Lake 101-200 meters  
 

0.2023 ***  
(0.02188)  

0.1990 *** 
(0.0406) 

0.1200 *** 
(0.0322) 

Lake 201-300 meters 
 

0.07006  ***  
(0.01948)  

0.0930 ** 
(0.0334) 

0.0368  
(0.0270) 

Lake 301-400 meters 
 

0.03122   
(0.01909)  

0.0528 * 
(0.0265) 

0.0241  
(0.0220) 

Lake 401-500 meters 
 

-0.03926 *   
(0.01567) 

-0.0326 
(0.0239) 

-0.0434 * 
(0.0186) 

Lake 501-600 meters 
 

 -0.006999   
(0.01693)  

0.0078  
(0.0230) 

-0.0085  
(0.0182) 

Lake 601-700 meters 
 

0.008090   
(0.01672)  

0.0250 
(0.0215) 

0.0108  
(0.0176) 

Large road 0-100 meters   
 

 -0.0007251   
(0.07053)  

-0.0120 
(0.0130) 

-0.0042  
(0.0097) 

Large road 101-200 meters 
 

0.03311 ***   
(0.007329) 

0.0182 
(0.0126) 

0.0260 ** 
(0.0096) 

Large road 201-300 meters 
 

0.02528 **    
(0.007705)  

-0.0007  
(0.0127) 

0.0075  
(0.0099) 

Large road 301-400 meters 
 

0.02135 *     
(0.08466)  

0.0034 
(0.0116) 

0.0084  
(0.0095) 

View -0.1173  ***  
(0.01340)  

-0.0288. 
(0.0172) 

-0.0373 * 
(0.0153) 

View*distance 7.018e-05 *** 2.2500E-05 * 2.6303E-05 * 
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Variable OLS SEM SARAR 
(8.426e-06) (1.0700E-05) (9.5176E-06) 

20-30dB -0.03674 ***   
(0.005936) 

0.0290 ** 
(0.0106) 

-0.0253 ** 
(0.0082) 

30-40dB -0.05112 ***  
(0.01180)  

-0.0551 ** 
(0.0194) 

-0.0462 ** 
(0.0153) 

40-50dB -0.04604 . 
(0.02444) 

-0.0642* 
(0.0279) 

-0.0512 * 
(0.0247) 

SPATIAL ERROR TERM (ρ)  0.6280 *** 
(0.0123) 

0.4742 *** 
(0.0249) 

SPATIAL LAG TERM (λ)   0.2617 *** 
(0.0282) 

WALD statistics ( h1:λ= ρ=0)   1556,6 *** 
R2 0.3823 0.3724 0.4552 

N= 12640, 12581 degrees of freedom 
*** significant at 0,1%, ** significant at 1%, * significant at 5%, . Significant at 10 %  
(): Standard error, R2 for the OLS adjusted, for SEM and GSM pseudo-R2 

 


