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Abstract

We investigate and compare the suitability of parametric and non-parametric stochastic
regression methods for analysing production technologies and the optimal firm size. Our
theoretical analysis shows that the most commonly used functional forms in empirical
production analysis, Cobb-Douglas and Translog, are unsuitable for analysing the opti-
mal firm size. We show that the Translog functional form implies an implausible linear
relationship between the (logarithmic) firm size and the elasticity of scale, where the slope
is artificially related to the substitutability between the inputs. The practical applicability
of the parametric and non-parametric regression methods is scrutinised and compared by
an empirical example: we analyse the production technology and investigate the optimal
size of Polish crop farms based on a firm-level balanced panel data set. A nonparamet-
ric specification test rejects both the Cobb-Douglas and the Translog functional form,
while a recently developed nonparametric kernel regression method with a fully nonpara-
metric panel data specification delivers plausible results. On average, the nonparametric
regression results are similar to results that are obtained from the parametric estimates,
although many individual results differ considerably. Moreover, the results from the para-
metric estimations even lead to incorrect conclusions regarding the technology and the

optimal firm size.

Keywords: production technology, nonparametric econometrics, panel data, Translog,

firm size, Polish crop farms
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1. Introduction

The optimal farm structure and the optimal farm size have been the subject of a long-
standing debate among agricultural economists and policymakers (Gorton and Davidova,
2004), because both of these issues have significant policy implications, especially in tran-
sition and developing economies. In order to avoid misleading policy recommendations,
the investigation of the optimal size of a farm (or any other firm) requires the use of proper
empirical methods. Two different approaches are predominantly used in empirical studies
of the optimal firm size and the relationship between firm size and productivity, namely
the nonparametric deterministic Data Envelopment Analysis (DEA) and the econometric
estimation of a parametric production technology. However, both approaches have their
shortcomings.

In the parametric approach to empirical production analysis, the most common para-
metric specifications of production technologies are the Cobb-Douglas and the Translog
(transcendental logarithmic) functional forms. In the case of the Cobb-Douglas functional
form, the elasticity of scale is constant, which limits the inference regarding the optimal
size to the sample mean. Although it is possible to derive observation-specific elasticities
of scale from the Translog functional form, this should not be applied to determine the
optimal firm size, because this functional form is only locally flexible. Moreover, we show
in this paper that the Translog functional form implies a linear relationship between the
(logarithmic) firm size and the elasticity of scale, where the slope is artificially related to
the substitutability between the inputs. Additionally, parametric approaches to empir-
ical production analysis generally have the problem that the a priori chosen functional
form may not be sufficiently similar to the “true” relationship between the inputs and the
outputs and that this misspecification may lead to biased estimates.

The DEA method solves this problem by using a nonparametric specification of the
production technology. However, the natural randomness of agricultural production calls
for the use of stochastic methods. Therefore, the use of stochastic regression methods is
generally preferred to the use of the deterministic DEA in empirical studies of agricultural
production technologies.

In order to solve the problems that are inherent in the above-mentioned approaches,
we propose the use of stochastic nonparametric kernel regression, because this technique
does not require the specification of a functional form and at the same time can account
for randomness in the production process. Hence, this nonparametric stochastic regres-
sion technique can be applied to determine production technologies in order to obtain
consistent estimates of elasticities of scale, and thus, to determine the optimal firm size
without artificial parametric constraints. Recent developments in nonparametric kernel

regression even allow for fully non-parametric panel data specifications. We demonstrate
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the usefulness of our approach and its advantages over previously applied approaches by
analysing the returns to scale and the optimal size of Polish crop farms.

The next section presents a literature review. Section three briefly introduces the para-
metric and nonparametric approaches used in econometric production analysis. Section
four describes the data used in this study. Section five delivers the results of the conducted

analyses and section six concludes.

2. Literature review

Although there has been a long-standing debate about economies of scale in agriculture
and the optimal farm size, no general agreement has yet been reached (Kislev and Pe-
terson, 1996). Empirical results depend on the farm type, the country, and the method
applied. Initiated by the seminal work of Sen (1962), there is a vast literature, particu-
larly in the field of development economics, that suggests an inverse relationship between
farm size and productivity (e.g. Carter, 1984; Barrett, 1996; Barrett, Bellemare and Hou,
2010, just to mention a few). Nonetheless, there are many contrary findings (e.g. Rao
and Chotigeat, 1981; Barbier, 1984; Dorward, 1999; Sarris, Savastano and Tritten, 2004,
among others) and even Amartya Sen argued that the inverse relationship should not
be generalised (Rudra and Sen, 1980). However, it is generally agreed that the optimal
farm size can be determined by empirical studies and that this should be promoted (e.g.
Munroe, 2001). In Central and Eastern European Countries (CEECs), especially during
the transition period, the discussion regarding the optimal farm size focussed on the dif-
ferences in efficiency and productivity between small-scale farms and large-scale farms.
In most empirical works (e.g. Hughes, 2000; Mathijs and Swinnen, 2001; Curtiss, 2000;
Lerman and Schreinemachers, 2002), individual farms are classified as small-scale farms
whereas cooperatives and state-owned farms are classified as large-scale farms. Hence,
the comparison of efficiencies and productivities between small-scale farms and large-
scale farms is rather an investigation of different governance structures than of different
sizes. Thus, the optimal size of individual farms in CEECs has not yet been thoroughly
analysed. Table 1 presents summary results from empirical studies of different farm types
in Poland and of crop farms in other European countries. There is only a single study of
Polish crop farms (Latruffe et al., 2004) but the results of this study are very question-
able: the monotonicity condition is violated for most input variables and the estimated
elasticity of scale is only 0.08, which is unrealistically low. In contrast, studies of other
farm types (including studies of all farm types) in Poland consistently report increasing
returns to scale of around 1.10. Studies of crop farms in other European countries also
report mostly increasing returns to scale. Only German crop farms were found to have
decreasing returns to scale. However, even within the countries with increasing returns

to scale, there is a large variation in the magnitude of the returns to scale with estimated



FOI Working Paper 2012 / 12

elasticities of scales varying between 1.03 and 1.39. The elasticities of scale summarised
in Table 1 are derived at the sample mean. Hence, the results of these studies indicate
that the average farm in Poland and the average crop farm in most EU countries are
below their optimal scale levels, i.e. productivity could be increased by increasing size.
However, these studies do not provide a comprehensive analysis of the optimal farm size.
Therefore, this paper fills this gap and analyses the optimal size of individual crop farms
in Poland.

Most studies that investigate the optimal firm size use a parametric production function
or distance function of the Translog functional form and evaluate the elasticity of scale at
different firm sizes. For instance, Oh, Lee and Heshmati (2008) analysed South Korea’s
manufacturing industry in the years 1993-2003 and found that estimated elasticities of
scale considerably depended on the plant size, and the authors concluded that larger man-
ufacturing plants (with more than 300 employees) should expand their size while smaller
plants (with less than 300 employees) should reduce their size to reach the technically
optimal size level. Aw and Hwang (1995) analysed Taiwan’s electronics industry based
on cross-sectional data. They estimated returns to scale for different sectors and different
firm sizes and found that in the Data Storage sector and the Processing Units sector,
the elasticity of scale fell from about 1.04 to about 0.94 as size increased. Noam (1983)
analysed scale economies of cable television companies in 1980 and found substantial in-
creasing returns to scale which even increased with the firm size measured by the number
of subscribers. In the field of agriculture, Vlastuin, Lawrence and Quiggin (1982) used
a Translog production function to investigate the optimal size of Australian farms. The
authors calculated elasticities of scale for different size groups of farms and found that
in the years 1966/1967 elasticities of scale were close to one implying constant returns to
scale for all farms, while in 1976/1977 the elasticities of scale increased with the farm size

(although they were not significantly different from one).

3. Parametric and Nonparametric Econometric Production Analysis

One of the most common approaches in applied economic production analysis is the
econometric estimation of production functions. The idea of an algebraic relationship
between inputs and output was developed in the eighteenth century in the works of
Turgot and Malthus and in the nineteenth century in the works of Ricardo and von
Thiinen (Humphrey, 1997)!. Finally, Wicksteed (1894) was the first to explicitly use the
concept of an algebraic production function while Cobb and Douglas (1928) were the first

to use econometric techniques to estimate a production function.

IThe production function proposed by von Thiinen in 1840 is in fact the same, albeit in indirect form,
as probably the most famous production function, the so-called Cobb-Douglas function (Humphrey,
1997).
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The purpose of regression analysis is to evaluate the effects of one or more explanatory
variables (e.g. inputs) on a single dependent variable (e.g. output). This is done by
evaluating the conditional expectation of the dependent variable given the explanatory

variables, which can be expressed as:

yi = f(Xi) + &, (1)

where y; is the observed dependent variable, X; is a set of explanatory variables, f(.) is the
unknown regression function that returns the conditional expectation of the dependent

variable E[y;|X;], €; is a random error term, and 4 indicates the observation.

3.1. Parametric Approach

The specification of the functional form for f(.) is one of the most crucial decisions in the
parametric approach to econometric production analysis. Initially, the most widely used

functional form in applied production economics was the Cobb-Douglas function:

Iny; = ag —|—Zozj In 2, (2)
J
where z;; indicates the quantity of the jth input and the as are the coefficients.
Because of the strong assumptions that the Cobb-Douglas production function imposes
on the underlying technology, Christensen, Jorgenson and Lau (1971) proposed a more
flexible generalisation of the Cobb-Douglas function, the Translog (transcendental loga-

rithmic) production function:
1
In y; :a0+2ajlnxij+522ajklnxij In z; (3)
J ik

with aji, = ag;.

These two functional forms have played a predominant role in applied production and
efficiency analysis for the past 40 years. One important reason for this is that both
functions are (after logarithmic transformation) linear in parameters and hence, can be
estimated by simple linear regression techniques. In the case of cross-sectional data (sev-
eral firms observed at a single period of time), these functional forms can be estimated
by the ordinary least squares (OLS) method. If several observations are available for each
firm, the usual panel data methods such as the fixed effects (FE) estimator or the random
effects (RE) estimator can be suitable, as they can account for individual or time specific
heterogeneity. The Hausman test (Hausman, 1978) can be used to determine whether the
RE estimator is consistent, and if it is, it should be used as it is more efficient than the

FE estimator.
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Because the selection of the functional form for modelling the relationship between the
inputs and the output is rather arbitrary, the a priori specification of a functional form
runs the risk of choosing a functional form that is not similar to the “true” relationship
between the inputs and the output. This misspecification can result in biased parameter
estimates and hence, also in biased measures which are derived from the parameters,
such as marginal products, partial output elasticities, and elasticities of scale. Moreover,
various statistical tests become incorrect. This problem has been addressed by introducing
flexible functional forms. However, most flexible functional forms such as the Translog
functional form are only locally flexible, i.e. they are only flexible at a single point, the
approximation point, which is usually the sample mean.

Although it is possible to obtain individual elasticities of scale for each observation
(firm) from locally flexible functional forms, we argue that this approach should not be
used to investigate the optimal firm size, because locally flexible functional forms may be
too inflexible to appropriately model the production technology of firms that are larger
or smaller than the sample mean and thus, measures such as elasticities are only valid at
the sample mean.

The Translog functional form possesses a further shortcoming in that if all inputs are
changed proportionally by the scale factor s > 0, the elasticity of scale is linearly related
to the logarithm of the firm size, where the slope is equal to the sum of the second-order

coefficients:

s = 2 S g
Thus, the elasticity of scale changes linearly with the logarithm of the firm’s scale.?

As the second-order coefficients of the Translog production function determine, among
other things, the substitutability between the inputs, the application of the Translog
functional form imposes an artificial relationship between input substitutability and the
effect of the firm size on the elasticity of scale. Table 2 presents the slopes of the elasticities
of scale with respect to the (logarithmic) farm size that we derived from the results of
some previously mentioned studies that used the Translog functional form. In two thirds
of the studies, this slope is positive, which implies that the derived elasticities of scale

increase with farm size.

2 In case of a Translog output distance function, the elasticity of scale also changes linearly with the
logarithm of the firm’s scale, where the slope is d¢/dIns = — 3, 5", aj; and the s denote the
second-order coefficients of the input quantities. In the case of a Translog input distance function, the
inverse elasticity of scale changes linearly with the logarithm of the firm’s scale, where the slope is
de71/0lns = — Zj >k Bjr and the ;s denote the second-order coefficients of the output quantities.
This means that the elasticity of scale of the Translog input distance function changes non-linearly
with the logarithm of the firm’s scale, where the (non-constant) slope is 9¢/dIns = €2 > 2k Bik-
The proofs are presented in appendix B and substantially draw on Ray (1998) who showed that the
elasticities of scale derived from a Translog production function are constant over all firms, if the
second-order coefficients sum to zero, i.e. the Translog production function is homothetic.

8
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Table 2: Effect of farm size on the elasticity of scale derived from selected studies listed
in Table 1

Country | 0¢/J1lns
Hockmann, Pieniadz and Goraj (2007) PL 0.01
Renner et al. (2009) PL 0.05
Briimmer, Glauben and Thijssen (2002) PL -0.20
Bakucs et al. (2010) HU 0.04
Kumbhakar and Lien (2010) NO 0.25
Zhu and Lansink (2010) DE 0.02
Zhu and Lansink (2010) NL -0.27
Zhu and Lansink (2010) SE 0.02
Rasmussen (2010) DK -0.30

Note: Zhu and Lansink (2010) used the quadratic terms (Inz;)? as regressors rather than 1/2(Inxz;)? as

given in the Translog specification. Therefore, we had to multiply the coefficients of the quadratic terms

by two in order to obtain the «;; coefficients of the Translog function.

Globally flexible functional forms such as the Fourier flexible functional form (Gallant,
1982) or methods employing neural networks (Michaelides, Vouldis and Tsionas, 2010)
solve the problems that we described for non-flexible or only locally flexible functional

forms. However, in this paper, we use a different approach: nonparametric regression.

3.2. Nonparametric Approach

Non-parametric approaches do not require a parametric specification of the functional
relationship between the explanatory variables and the dependent variable. Hence, they
avoid a possible misspecification of the functional form. The predominant nonparametric
method in applied production analysis is the deterministic Data Envelopment Analysis
(DEA) introduced by Charnes, Cooper and Rhodes (1978), while stochastic nonparamet-
ric methods such as non-parametric regression analysis are very rarely used. Stochastic
methods are particularly advantageous in stochastic environments such as agricultural
crop production, where random weather conditions have an important influence on the
outcome. Therefore, we apply a stochastic and nonparametric local-linear kernel estima-
tor in this study. One can think of this estimator as a set of weighted linear regressions,
where a weighted linear regression is performed at each observation and the weights of
the other observations decrease with the distance from the respective observation. The
weights are determined by a kernel function and a set of bandwidths, where a bandwidth
for each explanatory variable must be specified. The smaller the bandwidth, the faster
the weight decreases with the distance from the respective observation. In our study, we
make the frequently used assumption that the bandwidths can differ between regressors
but are constant over the domain of each regressor. While the bandwidths were initially
determined by using a rule of thumb, nowadays increased computing power allows us to

select the optimal bandwidths for a given model and data set according to the expected
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Kullback-Leibler cross-validation criterion (Hurvich, Simonoff and Tsai, 1998). Hence, in
nonparametric kernel regression, the overall shape of the relationship between the inputs
and the output is determined by the data and the (marginal) effects of the explanatory
variables can differ between observations without being restricted by an arbitrarily chosen
functional form.

The first applications of stochastic nonparametric kernel methods in production anal-
ysis, mainly in the stochastic frontier framework, are Vinod and Ullah (1988), Kneip and
Simar (1996) and Fan, Li and Weersink (1996). More recent applications can be found in
Henderson and Simar (2005) and Kumbhakar et al. (2007).

In agricultural economics, the most recent studies which have employed stochastic non-
parametric regression methods are Kumbhakar and Tsionas (2009) who estimated the
production function of Norwegian salmon farms, Livanis, Salois and Moss (2009) who
analysed the crop response production function for corn production in Illinois and Indi-
ana, and Verschelde et al. (forthcoming) who investigated the relationship between farm
productivity and farm size in Burundi.

Although parametric regression methods still constitute the standard for estimating
panel data models, the popularity of nonparametric regression methods for panel data
sets has recently increased (e.g. Porter, 1996; Lin and Carroll, 2000; Wang, 2003; Hen-
derson and Ullah, 2005; Henderson, Carroll and Li, 2008). Initially, nonparametric kernel
regression methods usually used the Epanechnikov kernel or the Gaussian kernel and
could only include continuous explanatory variables. In order to account for the panel
structure, these nonparametric studies usually applied data transformation methods that
were developed for parametric panel data regression such as the “within” or “between”
transformations or first differencing (e.g. Henderson, Carroll and Li, 2008). However,
these data transformations are not valid in the nonparametric framework unless one as-
sumes additive separability of the individual and time effects, which would make the use
of nonparametric regression questionable in many applications (Racine, 2008). Further-
more, these data transformation methods result in a considerable loss of observations
(degrees of freedom), particularly when the time dimension of the panel data set is rather
short. This is a substantial drawback when using nonparametric regression, because these
methods demand a large number of observations.

Therefore, we follow Henderson and Simar (2005) and Racine (2008) who estimate a
fully nonparametric two-ways panel data model by applying the nonparametric regression
method proposed by Li and Racine (2004) and Racine and Li (2004) that can handle both
continuous and categorical explanatory variables. The authors use time and firm id as
(ordered and unordered) categorical explanatory variables so that not only the level of the
dependent variable (“intercept”) but also the effects of the explanatory variables on the
dependent variable (“slopes”) may differ between time periods and individual firms. This

advantage makes the method very useful in applied production analysis, because it allows

10
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us to estimate observation-specific measures such as elasticities and marginal products,
etc. which are not artificially constrained by an arbitrarily chosen functional form.

The statistical significance levels of the explanatory variables can be obtained by boot-
strapping using the methods proposed by Racine (1997) and Racine, Hart and Li (2006).

Furthermore, nonparametric specification tests can be used to scrutinise the func-
tional form of parametrically estimated (production) models. In most applications of
kernel based regression models, commonly used functional forms (i.e. Cobb-Douglas and
Translog) were rejected in favour of a nonparametric specification (e.g. Verschelde et al.,
forthcoming; Livanis, Salois and Moss, 2009) and the results (such as elasticities) ob-
tained by nonparametric methods were economically more intuitive (e.g. Kumbhakar and
Tsionas, 2009).

4, Data

In this study, we use balanced panel data from the Polish Farm Accountancy Data Network
(FADN) which consists of 342 farms specialising in crop production® in the period 2004
to 2010. Hence, our data set includes 2394 observations in total.

The dependent variable of the production function is the farms’ output which is mea-
sured as the value of the total agricultural production. Four inputs are used in the
regression analyses: labour, land, intermediate inputs, and capital. Labour is measured
by Annual Work Units (AWU), where 1 AWU equals 2200 hours of work. Total utilised
agricultural area in hectares is used as a measure of land input. Intermediate inputs
are measured as the sum of total farming overheads (e.g. maintenance, energy, services,
other direct inputs) and specific costs (e.g. fertilisers, pesticides, seeds). Capital input is
measured as the value of total fixed assets excluding the value of land. Since data on to-
tal agricultural production, intermediate inputs, and capital are expressed monetarily in
current Polish Ztoty (PLN), these data were deflated by national price indices published
by the Central Statistical Office of Poland (GUS, 2012b).* Descriptive statistics of the
regression variables are presented in Table 3. It is worth stressing that the crop farms
in our data set are individual farms that mainly use family labour. The farm size varies

from 7.3ha to 632.0 ha with an average of 82.9 ha, while the average size of individual

3We selected all farms that are classified as specialised producers of cereals, oilseed and protein crops
(according to the FADN’s methodology) for at least 5 out of the 7 years covered in the data set. As
the FADN typology classifies farms according to the expected gross margin (“standard gross margin”)
of the different types of production rather than the actual production, we only included farms that
have a share of actual (observed) crop production in total agricultural output higher than 50% in
each year of the sample.

4The value of agricultural production is deflated by the price index of agricultural production; the value
of variable inputs is deflated by the price index of purchased goods and services for current agricultural
production; and the value of the capital stock is deflated by the price index of purchased goods and
services for investment.

11
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farms (with an area exceeding 1 ha of arable land) increased from 7.5 ha in 2004 to 8.6 ha
in 2010 (GUS, 2012a).

Table 3: Descriptive statistics of regression variables

Variable Min Median Mean Max Std. dev.

Output (V) [in k PLN] 6.34 125.40 188.40 1563.00 188.61

Labour (L) [in AWU] 0.19 1.55 1.66 6.81 0.77

Land (A) [in ha] 7.31 59.30  82.86  632.00 79.25

Intermediate inputs (V) [in k PLN] 4.42 75.94 113.20 1167.00 112.99

Capital stock (K) [in k PLN] 5.52  233.40 354.00 2160.00 334.37
5. Results

All estimations and calculations were conducted within the statistical software environ-
ment “R” (R Development Core Team, 2012) using the add-on packages “plm” (Croissant
and Millo, 2008) for panel data estimations and the add-on package “np” (Hayfield and

Racine, 2008) for nonparametric regression and specification tests.

5.1. Parametric Approach

The Cobb-Douglas and Translog production functions were both estimated with three
different estimators: fixed effects (FE), random effects (RE), and pooled OLS (i.e. ig-
noring the panel structure of the data). Diagnostic tests for both functional forms are
presented in Table 4. For both functional forms, a Hausman test shows that the RE
model is inconsistent. F-tests indicate that both individual effects and time specific ef-
fects are statistically significant so that we can reject the pooled OLS models, the one-way
individual FE models, and the one-way time FE models in favour of the two-ways FE
models. A Wald test which was used to compare the two functional forms clearly re-
jects the Cobb-Douglas FE model in favour of the Translog FE model. The regression
error specification test (RESET) proposed by Ramsey (1969) rejects the linearity (in logs)
of the Cobb-Douglas model but accepts the functional form of the Translog model (P-
value = 0.112). Furthermore, we apply the nonparametric specification test described in
Hsiao, Li and Racine (2007) to check whether the functional forms used in the two para-
metric models (Cobb-Douglas and Translog) are consistent with the “true” relationship
between the inputs and the output in our data set, i.e. whether the dependent variables
are indeed linear in all regressors. This test shows that neither the Cobb-Douglas FE
specification nor the Translog FE specification is consistent with the data. Hence, while
the Cobb-Douglas functional form is clearly rejected by the Wald test, Ramsey’s RESET

test, and the nonparametric specification test, the Translog functional form is accepted by

12
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Table 4: Results of diagnostic tests for Cobb-Douglas and Translog production functions

Test Function Statistics Decision
Poolabillity test CD F(347,2042) = 6.538, p < 0.001 Pooled model rejected
(FE vs. Pooled) TL F(347,2032) = 6.451, p < 0.001 Pooled model rejected
2-way FE CD F(6,2042) = 39.470, p < 0.001 Signif. time effects
vs. Individual FE TL F(6,2032) = 5.988, p < 0.001 Signif. time effects

) CD F(341,2042) = 6.089, p < 0.001 Signif. indiv. effects
2-way FE vs. Time FE

TL F(341,2032) = 5.988, p < 0.001 Signif. indiv. effects

Hausman test CD x2(4) = 121.808, p < 0.001 RE model rejected
(RE vs. FE) TL Y2(14) = 124.391, p < 0.001 RE model rejected
galeFtEeSiS' CD FE) TL vs. CD  x2(10) = 35.561, p < 0.001 CD FE rejected
RESET test CD RESFET(8,2381) = 3.687, p < 0.001 CD FE rejected
(linear specification) TL RESET(8,2381) = 3.687, p=0.112 TL FE accepted
Nonparametric model CD Jn =1.017, p = 0.015 CD FE rejected
specification test TL Jn = 0.882, p = 0.018 TL FE rejected

Ramsey’s parametric RESET test, but rejected by the nonparametric specification test.
The estimation results of the most suitable parametric model, the two-ways FE Translog
production function, are presented in Table 5.°> The sum over all elements of the matrix
of second-order coefficients (see equation 4) is 0.014.% This indicates that the elasticity of

scale approximately increases by 0.012 units if all input quantities increase by 1%.

5.2. Nonparametric Approach

In our nonparametric model, we use the logarithm of the output quantity as the dependent
variable and the logarithms of the input quantities as continuous explanatory variables.
Using the logarithms of these variables has two advantages. First, given the right-skewed
distribution of the output and input quantities, the logarithms of these variables are more
evenly distributed, which is desirable when using fixed (constant) bandwidths.” Second,
we can interpret the marginal effects (gradients) of the logarithmic input quantities on the
logarithmic output quantity as partial output elasticities and the sum of these gradients

as elasticity of scale.

5 The results of the other parametric models are presented in appendix tables Al and A2.

6 Please note that the coefficients of the interaction terms that are presented in table 5 have to be added
twice, because they correspond to the off-diagonal elements of the symmetric coefficient matrix and
hence, appear twice in this matrix.

7 Without taking the logarithm, there would be many observations within the bandwidths for small
values of the explanatory variables (small farms), but only very few observations within the bandwidths
for large values of the explanatory variables (large farms) so that the regression function would risk
becoming over-smoothed for small farms and/or under-smoothed for large farms.

13
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Table 5: Results of parametric fixed-effects estimation of Translog production function

Regressor Estimate Std. Error t value P-Value

In(L) -0.101 0.168 -0.600  0.548
In(A) 0.227 0.198 1150  0.250
ln(V) 0.519 0.139  3.734  0.000
In(K) 0.067 0.108  0.620  0.536
1/2 In(L)? -0.107 0.070 -1.534  0.125
In(L) In(A) 0.066 0.061 1.070  0.285
In(L) In(V) -0.068 0.054 -1.248  0.212
In(L) In(K) 0.040 0.030 1.328  0.184
1/2 In(A)? -0.146 0.076 -1.911  0.056
In(A) In(V) 0.254 0.058  4.385  0.000
In(A)In(K)  -0.044 0.032 -1.381  0.167
1/2 In(V)? -0.289 0.063 -4.554  0.000
In(V) In(K) 0.025 0.030 0.835  0.404
s In(K)? 0.008 0.021 038  0.699
R? = 0.406

As we chose the two-ways fixed effects model for the parametric estimation, we used the
IDs of the individual farms and the time (year) as additional (categorical) explanatory
variables in the nonparametric regression so that both modelling approaches are compa-
rable. While the ID of the individual farm is clearly an unordered categorical variable, we
estimated the nonparametric model both with the year as an unordered categorical vari-
able (assuming that the effects of successive years are unrelated due to random weather
events) and with the year as an ordered categorical variable (assuming that there is a
clear trend over time).

In order to find the most suitable kernels for the continuous and categorical variables
and the most suitable specification of the time variable, we estimated our nonparametric
model with all 16 combinations of the different kernels and the different specifications of
the time variable. We chose the nonparametric model, where the year is modelled as an
ordered categorical variable, the second-order Epanechnikov kernel is used for the con-
tinuous regressors (i.e. the four input variables), the kernel proposed by Wang and van
Ryzin (1981) is used for the ordered categorical explanatory variable (year) and the kernel
proposed by Li and Racine (2003) is used for the unordered categorical variable (farm ID)
because in this specification all explanatory variables have a notable and statistically sig-
nificant effect. The estimation results of the chosen nonparametric model are summarised
in Table 6. The bandwidths of the continuous explanatory variables are very large, which

indicates that the relationship between each logarithmic input quantity and the logarith-

14
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mic output quantity—holding the other explanatory variables constant—is approximately
linear. Similarly, the bandwidth of the time variable is virtually at its upper bound, which
indicates that—everything else being constant—the effect of time on the output is very
limited. However, even if the bandwidths are very large, non-parametric local-linear ker-
nel regression allows for interaction effects between the regressors so that the model is not
necessarily linear (Cobb-Douglas in our application) and independent of time, because
the effect of one regressor on the dependent variable may still depend on the values of the
other regressors. Therefore, our estimated partial output elasticities (i.e. the gradients of
the continuous variables) and the rate of technological change (i.e. the gradients of the
time variable) vary considerably between farms (see table 6). On average, slight techno-
logical regress of 0.3% per year has occurred but there is considerable variation between
observations with almost half of the observations (45%) exhibiting technological progress.
The productivity particularly increased in the years 2007 and 2010. The large variation
in the gradients of the ID variable indicates considerable productivity differences between

farms.

Table 6: Results of the nonparametric local-linear kernel regression

Regressor Bandwidth Gradients P-Value
Mean Std. Dev
In(L) 1047168 0.054 0.079  <0.001
In(A) 969597 0.147 0.087  <0.001
In(V) 366895 0.785 0.094  <0.001
In(K) 399621 0.084 0.048  <0.001
year (ordered) 1.000  -0.003 0.032 0.003
ID (unordered) 0.006 — 0.129  <0.001
R? = 0.956

5.3. Comparison of Parametric and Nonparametric Results

In order to collate the results of the parametric Translog model and the chosen nonpara-
metric model, we compare the partial production elasticities of each of the four inputs as
well as the elasticities of scale in figures 1 and 2, respectively. The elasticities of the in-
dividual observations differ considerably between the parametric and the nonparametric
model. Interestingly, there is not even any considerable correlation between the elas-
ticities based on the Translog function and the elasticities based on the nonparametric
production function. The monotonicity condition is partly violated in both parametric
and nonparametric models.

We aim to identify the optimal farm size by investigating the relationship between farm

size and the elasticity of scale. Figure 3 presents the relationship between farm size (in

15
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Figure 1: Partial output elasticities of labour (1a), land (1b), intermediate inputs (1c)
and capital (1d) based on the FE Translog model and the nonparametric kernel regression
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Figure 2: Elasticities of scale based on the FE Translog model and the nonparametric
kernel regression
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Figure 3: Elasticities of scale for different farm sizes derived from the FE Translog
model (3a) and the nonparametric kernel regression (3b)

ha, on a logarithmic scale) and the elasticities of scale obtained from our parametric and
nonparametric estimations. Both models show that most farms operate under increasing
returns to scale. The elasticities of scale obtained from the nonparametric model do not

significantly depend on the farm size. Both small farms as well as large farms usually ex-
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hibit increasing returns to scale and hence, could increase their productivity by increasing
their size. The largest farms in our sample (i.e. farms with more than 500 ha) have ap-
proximately constant returns to scale. Thus, the results of our nonparametric regression
suggest that the optimal farm size is at least as large as the largest farms in our sample.
On the contrary, the results obtained with the Translog functional form are rather sur-
prising. According to the results of the Translog model, most farms with less than 50 ha
would become less productive if they increased their size, while most farms with more
than 50 ha would become more productive if they increased their size. Furthermore, the
Translog model implies that the largest farm in the sample still has large economies of
scale, which would indicate that the optimal farm size is much larger than the largest
farms in our sample. The positive and nearly linear relationship between the (logarith-
mic) farm size and the elasticity of scale seems to be implausible and is an artefact of our
estimated Translog model rather than the truth, as we showed that the Translog func-
tional form implies a linear relationship between the scale of the farm and the elasticity of
scale. Therefore we found that the use of this functional form to investigate the optimal
firm size is rather limited. In contrast, the nonparametric model does not impose this

artificial relationship and gives plausible results.

6. Conclusion

We propose to increase the use of nonparametric econometric methods in empirical pro-
duction analysis. First, these methods can be applied to verify the functional form used
in parametric estimations of production functions. Second, they can be directly used to
estimate production functions without the specification of a functional form and hence,
they can avoid possible misspecification errors.

We found that the two functional forms, which are most widely used in empirical
production analysis, i.e. the Cobb-Douglas and the Translog functional form, are both
inconsistent with the “true” relationship between the inputs and the output in our spe-
cific data set. Furthermore, we showed that the Translog production function implies an
implausible relationship between farm size and the elasticity of scale, where the slope is ar-
tificially related to the substitutability between the inputs. Thus, the Translog functional
form seems to be unsuitable for analysing the optimal firm size.

We solved this problem by using nonparametric regression. This approach delivered
reasonable results, which were on average not too dissimilar from the results of the para-
metric estimations, although many individual results were rather different. This indicates
that parametric regression methods are suitable for investigating the average properties
of the production technology but are too restrictive for investigating the properties at

individual observations.
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We applied the nonparametric regression method proposed by Li and Racine (2004)
and Racine and Li (2004) that can handle both continuous and categorical explanatory
variables. This approach allowed us to include the time and the farm ID as categorical
explanatory variables to estimate a two-ways nonparametric panel data model that ac-
counts for the panel structure of our data set in a fully nonparametric way without any
data transformation or loss of observations.

Based on the results from the nonparametric approach, we conclude that the optimal
size of Polish individual crop farms is at least as large as the largest farms in our sample,
i.e. around 630 ha.
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Table A1l: Results of parametric regressions with Cobb-Douglas functional form

Pooled Random Effects Fixed Effects
In(L) 0.052** 0.068** 0.064*
(0.018) (0.022) (0.026)
In(A) 0.121* 0.388*** 0.507**
(0.016) (0.023) (0.032)
In(V) 0.815%** 0.548*** 0.448***
(0.017) (0.019) (0.022)
In(K) 0.080*** 0.076*** 0.047**
(0.009) (0.013) (0.016)
(Intercept) 0.337*** 0.427** —
(0.040) (0.076) —
R? 0.905 0.700 0.396

Standard errors in parentheses

t significant at p < .10; *p < .05; **p < .01; ***p < .001
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Table A2: Results of parametric regressions with Translog functional form
Pooled Random Effects Fixed Effects

In(L) 0.088 —0.036 —0.101
(0.129) (0.149) (0.168)
In(A) 0.113 0.330* 0.227
(0.121) (0.150) (0.198)
In(V) 0.981 % 0.643" 0.519**
(0.119) (0.127) (0.139)
In(K) 0.102 0.077 0.067
(0.076) (0.092) (0.108)
1/2 In(L)? 0.032 —0.084 —0.107
(0.065) (0.065) (0.070)
In(L) In(A) 0.038 0.069 0.066
(0.051) (0.055) (0.061)
In(L) In(V) —0.103f —0.083 —0.068
(0.053) (0.051) (0.054)
In(L) In(K) 0.044 0.038 0.040
(0.028) (0.028) (0.030)
1/2 In(A)? —0.319** —0.226** —0.1461
(0.064) (0.069) (0.076)
In(A)In(V) 0.282*** 0.269*** 0.254***
(0.056) (0.055) (0.058)
In(A) In(K) 0.018 —0.035 —0.044
(0.025) (0.029) (0.032)
/2 In(V)? —0.236** —0.285"** —0.289"*
(0.064) (0.060) (0.063)
In(V) In(K) —0.052f 0.007 0.025
(0.027) (0.028) (0.030)
1/2 In(K)? 0.022 0.019 0.008
(0.017) (0.019) (0.021)
(Intercept) —0.050 0.371 -
(0.220) (0.326) —
R? 0.907 0.701 0.406

Standard errors in parentheses
T significant at p < .10; *p < .05; **p < .01; ***p < .001
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B. Elasticity of scale and firm’s scale in Translog production technologies

B.1. Translog production function

For the Translog production function defined in (3), we get the following partial output

elasticities (ignoring the subscript 7 that indicates the observation):

Oln f(z)

i~ Olnx;

=+ > ajilnmy (5)
k
and the following elasticity of scale:

e=> €=> o+ > aplnz (6)
J J J ok

Scaling all input quantities in the Translog production function (3) by a factor s > 0, the

elasticity of scale of the “scaled firm” is:
e=Y a;+> > ajpn(sz) = ap+(Ins)d D ap+> > aphay (7)
J J ok J JoJ J ok

Hence, the effect of the (logarithmic) scale on the elasticity of scale is:

Oe
=20 (8)
dlns 4=
Thus, the elasticity of scale changes linearly with the logarithm of the firm’s scale.

B.2. Translog output distance function

Given the Translog output distance production with N inputs and M outputs:

| N N
lnD—ag—i—Za]lnx] 522043161“%’1“% (9)
j=1 J=1k=1

—

M LM M
+> BIny; + 5225 kIny; In gy
j=1

j=1k=1

N M
—i—ZZdjklnxj In .

j=1k=1
- _ _ M _ M _ M _ .
with ok = ajk, Bik = Brjs 2oj=1 85 = 1, 2521 Bk = 0V k, and 35,7, 05 = 0V j, we get

the following distance elasticities of the inputs:

In D
L(m,y) = a; + Zajklnxk + Z5gklﬂyk (10)

€, =
J
Olnz, =
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and the following elasticity of scale:
N N N N N M
=Yg ==D ;=Y D> aghna,—) > dplny (11)
j=1 j=1 j=1k=1 j=1k=1

Scaling all input quantities in the Translog output distance function (9) by a factor s > 0,

we have to scale all outputs by a factor ¢ with

1 N N
Int=e¢ lns—§(1n5)222ajk (12)

j=1k=1

in order to maintain a constant distance D. This scaling of the inputs and outputs results

in the following elasticity of scale of the “scaled firm”:

N M
ajr In(s xy) ZZ(Sjkln t yr) (13)

I
-
£
-
Mz

7j=1 j=1k=1 j=1k=1
N N N N N N M N M
= —Zoc] — (lns)zz%k — ZZ& & Inxzy, — (Int) ZZéjk — ZZéjklnyk
j=1 j=1k=1 j=1k=1 j=1k=1 j=1k=1
(14)
N N N N N N M
=—> aj—(Ins)d > ap—> Y oplna, —> > iy, (15)
j=1 j=1k=1 j=1k=1 j=1k=1
Hence, the effect of the (logarithmic) scale on the elasticity of scale is:
Oe N N
= — Z ajk (16)
Jlns ot
Thus, the elasticity of scale changes linearly with the logarithm of the firm’s scale.
B.3. Translog input distance function
Given the Translog input distance production with N inputs and M outputs:
1 NN
lnD—ag—l—Za]lnx] §ZZa3klnx]1na:k (17)
j=1 j=1k=1
M 1 M M
+2_ By + 53> > Bielny;nyy
j=1 j=1k=1
N M
+ Z Zdjklnxj In 1,
j=1k=1
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with o = g, Bk = Brj, 2o J Lo =1, Zﬁyzl o, =0V k, and Z;\le djr = 0V k, we get

the following distance elasticities of the outputs:

Oln D(z,vy)

<= Jlny,

M N
k=1 k=1

and the following inverse elasticity of scale:

M M M N N
—Zqz—Zﬁj—ZZ ]klnyk—zz5kjln$k (19)
j=1 Jj=1 J=lk=1

7=1k=1

Scaling all input quantities in the Translog input distance function (17) by a factor s > 0,

we have to scale all outputs by a factor ¢ with
1 M M
Int=¢"'lns— §(ln $2Y > Bk (20)
j=1k=1

in order to maintain a constant distance D. This scaling of the inputs and outputs results

in the following inverse elasticity of scale of the “scaled firm”:

M M M N
ZBJ Zzﬁjk ln Syk ZZék] ln t.fL'k (21)
J=1 Jj=1k=1 Jj=1k=1
M M M M M N M N
:—Zﬁj (Ins) ZZﬁjk—ZZBklnyk— (Int) 225 ZZék]lna:k
j=1k=1 j=1k=1 j=1k=1 j=1k=1
(22)
M M M M M N
:—Zﬁa (ns)d > Biw =2 > Biwlnye — 3> bk Iny (23)
j=1k=1 j=1k=1 j=1k=1
Hence, the effect of the (logarithmic) scale on the inverse elasticity of scale is:
86_1 M M
= =22 O (24)
dln s ==

Thus, the inverse elasticity of scale changes linearly with the logarithm of the firm’s scale.
This means that the elasticity of scale changes non-linearly with the logarithm of the

firm’s scale with following (non-constant) slope:

Oe de  Oe! M M
Olns el aln5:€2 > B (25)

j=1k=1

24



FOI Working Paper 2012 / 12

References

Aw, B. and Hwang, A. (1995). Productivity and the export market: A firm-level analysis.
Journal of Development Economics 47: 313-332.

Bakucs, L. Z., Latruffe, L., o, I. F. and Fogarasi, J. (2010). The impact of EU accession

on farms’ technical efficiency in Hungary. Post-Communist Economies 22: 165-175.

Barbier, P. (1984). Inverse relationship between farm size and land productivity: A prod-
uct of science or imagination? Fconomic and Political Weekly 19: A189-A1914+A193—
A198.

Barrett, C. B. (1996). On price risk and the inverse farm size-productivity relationship.
Journal of Development Economics 51: 193-215.

Barrett, C. B., Bellemare, M. F. and Hou, J. Y. (2010). Reconsidering conventional ex-

planations of the inverse productivity-size relationship. World Development 38: 88-97.

Briimmer, B., Glauben, T. and Thijssen, G. (2002). Decomposition of productivity growth
using distance functions: The case of dairy farms in three European countries. American
Journal of Agricultural Economics 84: 628—644.

Carter, M. R. (1984). Identification of the inverse relationship between farm size and pro-
ductivity: An empirical analysis of peasant agricultural production. Ozford Economic
Papers 36: 131-45.

Charnes, A., Cooper, W. W. and Rhodes, E. (1978). Measuring the efficiency of desicion
making units. Furopean Journal of Operational Research Policy 2: 429-444.

Christensen, L. R., Jorgenson, D. W. and Lau, L. J. (1971). Conjugate duality and the

transcendental logarithmic functions. Fconometrica 39: 255-256.

Cobb, C. W. and Douglas, P. H. (1928). A theory of production. The American Economic
Review 18: 139-165.

Croissant, Y. and Millo, G. (2008). Panel data econometrics in R: The plm package.
Journal of Statistical Software 27: 1-43.

Curtiss, J. (2000). Technical Efficiency and Competitiveness of the Czech Agricultural
Sector in Late Transition-the Case of Crop Production. In proceedings KATO Sympo-

sium.

Dorward, A. (1999). Farm size and productivity in Malawian smallholder agriculture. The
Journal of Development Studies 35: 141-161.

25



FOI Working Paper 2012 / 12

Fan, Y., Li, Q. and Weersink, A. (1996). Semiparametric estimation of stochastic produc-

tion frontier models. Journal of Business and Economic Statistics 14: 460-68.

Gallant, A. R. (1982). Unbiased determination of production technologies. Journal of
Econometrics 20: 285-323.

Gorton, M. and Davidova, S. (2004). Farm productivity and efficiency in the CEE appli-

cant countries: A synthesis of results. Agricultural Economics 30: 1-16.

GUS (2012a). Bank Danych Lokalnych / Local Data Bank. Gtéwny Urzad Statystyczny
/ Central Statistical Office of Poland, http://www.stat.gov.pl/bdlen/ |[accessed 09-
October-2012].

GUS (2012b). Prices in the national economy - january 2012. Gtéwny Urzad Statystyczny
/ Central Statistical Office of Poland, http://www.stat.gov.pl/cps/rde/xbcr/gus/
PUBL_pt_prices_national economy_Olm_2012.zip [accessed 05-March-2012].

Hausman, J. A. (1978). Specification test in econometrics. FEconometrica 46: 1251-1272.

Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package.
Journal of Statistical Software 27: 1-32.

Henderson, D., Carroll, R. and Li, Q. (2008). Nonparametric estimation and testing of
fixed effects panel data models. Journal of Econometrics 144: 257-275.

Henderson, D. and Ullah, A. (2005). A nonparametric random effects estimator. Fco-
nomics Letters 88: 403-407.

Henderson, D. J. and Simar, L. (2005). A Fully Nonparametric Stochastic Frontier Model
for Panel Data. Working Paper 0519, Departmentment of Economics, State University
of New York at Binghamton.

Heshmati, A. and Kumbhakar, S. C. (1997). Estimation of technical efficiency in swedish
crop farms: A pseudo panel data approach. Journal of Agricultural Economics 48:
22-37.

Hockmann, H., Pieniadz, A. and Goraj, L. (2007). Modeling Heterogeneity in Production
Models: Empirical Evidence from Individual Farming in Poland. Discussion Paper 109,
Leibniz Institute of Agricultural Development in Central and Eastern Europe, Halle

(Saale), Germany.

Hsiao, C., Li, Q. and Racine, J. (2007). A consistent model specification test with mixed

discrete and continuous data. Journal of Econometrics 140: 802-826.

26


http://www.stat.gov.pl/bdlen/
http://www.stat.gov.pl/cps/rde/xbcr/gus/PUBL_pt_prices_national_economy_01m_2012.zip
http://www.stat.gov.pl/cps/rde/xbcr/gus/PUBL_pt_prices_national_economy_01m_2012.zip

FOI Working Paper 2012 / 12

Hughes, G. (2000). Total productivity of emergent farm structures in Central and Eastern
Europe. In Stefan Tangermann, M. B. (ed.), Central and Eastern European Agriculture

in an FExpanding European Union. CABI Pub.

Humphrey, T. M. (1997). Algebraic production functions and their uses before Cobb-
Douglas. Federal Reserve Bank of Richmond Economic Quarterly 83: 51-83.

Hurvich, C. M., Simonoff, J. S. and Tsai, C. L. (1998). Smooting parameter selection in
nonparametric regression using an improved Akaike information criterion. Journal of
the Royal Statistical Society Series B 60: 271-293.

Kislev, Y. and Peterson, W. (1996). Economies of scale in agriculture: A reexamination of
the evidence. In Antle, J. M. and Sumner, D. A. (eds), The Economics of Agriculture.
Papers in Honor of D. Gale Johnson. University of Chicago Press, 2, 156-170.

Kneip, A. and Simar, L. (1996). A general framework for frontier estimation with panel
data. Journal of Productivity Analysis 7: 187-212.

Kumbhakar, S. C. and Lien, G. (2010). Impact of subsidies on farm productivity and
efficiency. In Ball, V. E., Fanfani, R. and Gutierrez, L. (eds), The Economic Impact
of Public Support to Agriculture: An International Perspective. Springer Verlag, 7,
109-124.

Kumbhakar, S. C., Park, B. U., Simar, L. and Tsionas, E. G. (2007). Nonparametric
stochastic frontiers: A local maximum likelihood approach. Journal of Econometrics
137: 1-27.

Kumbhakar, S. C. and Tsionas, E. G. (2009). Nonparametric estimation of production
risk and risk preference functions. In Nonparametric Econometric Methods (Advances
in Econometrics, Volume 25). Emerald Group Publishing Limited, 25, 223-260.

Latruffe, L., Balcombe, K., Davidova, S. and Zawalinska, K. (2004). Determinants of
technical efficiency of crop and livestock farms in Poland. Applied Economics 36: 1255—
1263.

Latruffe, L. and Sauer, J. (2010). Subsidies, Production Structure and Technical Change:
A Cross-Country Comparison. In 2010 Annual Meeting, July 25-27, 2010, Denver,

Colorado. Agricultural and Applied Economics Association.

Lerman, Z. (2002). Productivity and efficiency of individual farms in Poland: A case for
land consolidation. Paper presented at the Annual Meeting of the American Agricultural

Economics Association, Long Beach, July 28-31, 2001.

27



FOI Working Paper 2012 / 12

Lerman, Z. and Schreinemachers, P. (2002). Individual farming as a labor sink: Evidence
from Poland and Russia. Paper presented at the Annual Meeting of the American

Agricultural Economics Association Long Beach, July 28-31, 2001.

Li, Q. and Racine, J. S. (2003). Nonparametric estimation of distributions with categorical

and continuous data. Journal of Multivariate Analysis 86: 266—292.

Li, Q. and Racine, J. S. (2004). Cross-validated local linear nonparametric regression.
Statistica Sinica 14: 485-512.

Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data
when the predictor is measured without/with error. Journal of the American Statistical

Association 95.

Livanis, G. T., Salois, M. J. and Moss, C. B. (2009). A nonparametric kernel repre-
sentation of the agricultural production function: Implications for economic measures
of technology. Paper presented at 83rd Annual Conference of Agricultural Economics

Society, Dublin, Ireland.

Mathijs, E. and Swinnen, J. F. M. (2001). Production organization and efficiency during
transition: An empirical analysis of East German agriculture. The Review of Economics
and Statistics 83: 100-107.

Michaelides, P. G., Vouldis, A. T. and Tsionas, E. G. (2010). Globally flexible functional
forms: The neural distance function. Furopean Journal of Operational Research 206:
456-469.

Munroe, D. (2001). Economic efficiency in Polish peasant farming: An international per-
spective. Regional Studies 35: 461 — 471.

Noam, E. M. (1983). Is cable television a natural monopoly? Communications. The

European Journal of Communication Research 9: 241-259.

Oh, I., Lee, J. and Heshmati, A. (2008). Total factor productivity in Korean manufac-
turing industries. Global Economic Review: Perspectives on Fast Asian Economies and
Industries 37: 23-50.

Porter, J. R. (1996). Essay in Econometrics. Ph.D. thesis, Massachusetts Institute of
Technology. Dept. of Economics.

R Development Core Team (2012). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

Racine, J. S. (1997). Consistent significance testing for nonparametric regression. Journal
of Business and Economic Statistics 15: 369-379.

28



FOI Working Paper 2012 / 12

Racine, J. S. (2008). Nonparametric econometrics: A primer. Foundations and Trends in

FEconometrics 3: 1-88.

Racine, J. S., Hart, J. and Li, Q. (2006). Testing the significance of categorical predictor

variables in nonparametric regression models. Econometric Reviews 25: 523-544.

Racine, J. S. and Li, Q. (2004). Nonparametric estimation of regression functions with

both categorical and continuous data. Journal of Econometrics 119: 99-130.

Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regres-
sion analysis. Journal of the Royal Statistical Society. Series B (Methodological) 31:
350-371.

Rao, V. and Chotigeat, T. (1981). The inverse relationship between size of land holdings
and agricultural productivity. American Journal of Agricultural Economics 63: 571—
574.

Rasmussen, S. (2010). Scale efficiency in Danish agriculture: An input distance—function

approach. Furopean Review of Agricultural Economics 37: 335-367.

Ray, S. C. (1998). Measuring scale efficiency from a translog production function. Journal
of Productivity Analysis 11: 183-194.

Renner, S., Hockmann, H., Pieniadz, A. and Glauben, T. (2009). On flexibility in the
Polish farming sector. Paper presented at the 111th EAAE-IAAE Seminar ’Small Farms:

decline or persistence’;, University of Kent, Canterbury, UK.

Rudra, A. and Sen, A. (1980). Farm size and labour use: Analysis and policy. Economic
and Political Weekly 15: 391+393-394.

Sarris, A., Savastano, S. and Tritten, C. (2004). Factor market imperfections and polar-
ization of agrarian structures in Central and Eastern Europe. In Martin, P. and Peter,
W. (eds), The Role of Agriculture in Central and Eastern European Rural Development:
Engine of Change or Social Buffer. IAMO, 25, 84-100.

Sen, A. (1962). An aspect of indian agriculture. Economic Weekly Annual Number 14.

Verschelde, M., D’Haese, M., Rayp, G. and Vandamme, E. (forthcoming). Challenging
small-scale farming, a non-parametric analysis of the (inverse) relationship between

farm productivity and farm size in burundi. Journal of Agricultural Economics .

Vinod, H. and Ullah, A. (1988). Flexible production function estimation by nonparametric
kernel estimators. Advances in Econometrics: Nonparametric and Robust Inference T:
139-160.

29



FOI Working Paper 2012 / 12

Vlastuin, C., Lawrence, D. and Quiggin, J. C. (1982). Size economies in Australian agri-

culture. Review of Agricultural Economics 50: 265-273.

Wang, M.-C. and van Ryzin, J. (1981). A class of smooth estimators for discrete distri-
butions. Biometrika 68: 301-309.

Wang, N. (2003). Marginal nonparametric kernel regression accounting for within-subject
correlation. Biometrika 90: 43-52.

Wicksteed, P. H. (1894). Essay on the Coordination of the Laws of Distribution. London:
LSE, 1932nd ed.

Zhu, X. and Lansink, A. O. (2010). Impact of CAP subsidies on technical efficiency of crop
farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics 61:
545-564.

30



	Front page

	Introduction
	Literature review
	Parametric and Nonparametric Econometric Production Analysis
	Parametric Approach
	Nonparametric Approach

	Data
	Results
	Parametric Approach
	Nonparametric Approach
	Comparison of Parametric and Nonparametric Results

	Conclusion
	Tables with detailed results
	Elasticity of scale and firm's scale in Translog production technologies
	Translog production function
	Translog output distance function
	Translog input distance function


