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Abstract

Risk capital allocation problems have been widely discussed in the
academic literature. We consider a company with multiple subunits
having individual portfolios. Hence, when portfolios of subunits are
merged, a diversification benefit arises: the risk of the company as
a whole is smaller than the sum of the risks of the individual sub-
units. The question is how to allocate the risk capital of the company
among the subunits in a fair way. In this paper we propose to use
the Lorenz set as an allocation method. We show that the Lorenz
set is operational and coherent. Moreover, we propose a set of new
axioms related directly to the problem of risk capital allocation and
show that the Lorenz set satisfies these new axioms in contrast to
other well-known coherent methods. Finally, we discuss how to deal
with non-uniqueness of the Lorenz set.
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1 Introduction

This paper considers fair allocation of risk capital. When holding risky port-
folios companies and financial institutions typically withhold a level of capi-
tal, which is invested safely and acts as a buffer against unfavorable events -
so-called risk capital. It can be used internally to measure the performance
of the company itself and to ensure that the future value of the company is
acceptable to the owner, CEO, chief risk officer or others. Moreover, in many
cases regulation will require companies to withhold a minimum amount of
risk capital in order to save the company from bankruptcy in case of e.g.
financial crisis. Holding an amount of riskless capital in this case is therefore
an obligation.

Often a company consists of several subunits which all contribute to the
company’s overall risk profile. In this paper we consider a situation where
each subunit has its own unique financial portfolio with own unique risk
profile. More generally, though, each subunit could have any other type
of activity involving risk such as, e.g., insurance. The question is how the
risk capital of the company as a whole should be allocated among the in-
dependent subunits. This question is far from trivial since the activities in
the different subunits are not perfectly correlated, so usually diversification
benefits arise. Allocating the risk capital solely based on each subunits’ in-
dividual risk profile can be misleading, as a subunit might seem risky when
looking only at the individual risk profile, but at the same time can be useful
in hedging other subunits’ activities. When the company’s risk capital is
properly allocated, each subunit’s performance evaluation can be based on
its ratio between expected return and allocated risk capital, i.e., the so-called
Return on Risk Adjusted Capital (RORAC) approach (see e.g., [16]). The
company thus gets a better overview of the overall financial situation, which
helps to clarify which activities of certain subunits that create most value for
the company.

Each subunit wants to minimize its share of the risk capital simply be-
cause they would rather invest in activities that give favorable returns instead
of being required to withhold an amount with no or very low return. The
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situation is therefore similar to a classical cost allocation problem modeled
as a transferable utility game, see e.g., Hougaard [19]. The seminal paper
on game theoretic risk capital allocation by Denault [13] focuses on the well
known Shapley and Aumann-Shapley cost allocation methods, and submits
that a desirable allocation method should be, what is dubbed, coherent, i.e.,
that the resulting allocation should satisfy the stand-alone core conditions
as well as a certain symmetry requirement. Since the Shapley value may fail
the stand-alone core conditions it is not coherent while well-known solution
concepts like the nucleolus (Schmeidler [24]) and the Aumann-Shapley value1

(Aumann and Shapley [6]) both are examples of coherent allocation rules.
Several other papers analyze risk capital allocation from a game theoretic

and axiomatic viewpoint. For instance, recently Chen et al., [10] consider the
systematic risk of an entire economy and how to attribute risk to individ-
ual companies. Most other papers consider risk capital allocation between
subunits at a company level. For example, Tsanakas and Barnett [28] and
Boonen et. al. [9] focus on the Aumann-Shapley rule and in the latter case,
generalized weighted versions of this rule. Gulick et al., [17] suggest to use
a version of the nucleolus with a different notion of coalitional excess. Balog
et al., [7] and Homburg and Scherpereel [18] focus on comparisons of several
relevant allocation rules, including the Shapley value, the nucleolus and the
Cost-Gap and β-method. In [18] they specifically look at the risk measure
value-at-risk (VaR, which is not coherent) and demonstrate by an experiment
that decision makers tend to disregard stand-alone core conditions and pre-
fer simple methods like the β-method. Csóka et al., [11] consider the formal
relation between the class of risk allocation games and the class of totally
balanced as well as exact games.

The stand-alone core conditions (making sure that no coalition of subunits
covers more than their own risk capital) are often considered the fundamental
fairness requirement of any allocation method - especially when the problem
itself is balanced (i.e., the core is non-empty) as in the case of risk capital
allocation using a coherent risk measure (e.g., expected shortfall). We agree
that relevant allocation methods should indeed be coherent in the sense of
[13].2 Yet, among the coherent methods we further submit that egalitarian

1Also known as the Euler or gradient method in the finance literature.
2Even if the subunits are forced to stay part of the company (at least in the short

run) and hence cannot threat to block the cooperation the stand-alone core conditions
are still relevant since they ensure that no coalition of subunits is subsidized by other
subunits. This is particularly important if subunit managers have performance related
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allocations should be preferred.
In particular, we suggest to apply the Lorenz solution (i.e., the set of

Lorenz undominated allocations in the core) for risk capital allocation. Ba-
sically this solution looks for the most equally distributed allocations of risk
capital subject to the stand-alone core conditions. This solution concept is
well-known in game theory (see e.g., Dutta and Ray [15], Hougaard et al.
[20]) but apparently it has not been analyzed in connection with risk capi-
tal allocation. We demonstrate that the Lorenz solution is coherent (with a
straightforward generalization of Denault’s definition of coherence to cover
set valued solutions) and has further advantages over alternative well-known
coherent solutions which are related directly to the problem of risk capital
allocation.

We show that the Lorenz solution is the only one among the well known
methods which ensures that the subunits has the right incentive to invest
when such an investment is to the benefit of the company as a whole; ensures
that no subunit is forced to hold risk capital when the aggregate (company)
risk is zero; ensures that every subunit holds a strictly positive level of risk
capital when they all have risky portfolios and a strictly positive risk capital
allocation is possible given the stand-alone core conditions.

Although the Lorenz solution is not a singleton it is still operational
in the sense of computation, see e.g., Smilgins [26]. Moreover selecting a
single allocation from the Lorenz set is also easy since, for instance, the
core allocation which minimizes the Euclidian distance to the equal split
allocation will be Lorenz undominated. But of course other selection criteria
tailor suited to fit the decision makers preferences could be imagined as well.

The paper is organized as follows: In Section 2 we set up the model. In
Section 3 we define the Lorenz solution and records a few useful properties.
In Section 4 we submit three new desirable properties directly related to risk
capital allocation and demonstrates that these properties are all satisfied by
the Lorenz solution but not by any of most well-known solutions from the
literature on risk capital allocation (i.e., the Shalpey value, the Cost-Gap
method, the nucleolus and the Aumann-Shapley value). Section 5 closes
with a few final remarks.

bonus schemes.
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2 The model

In this paper we consider the allocation of risk capital along the lines of De-
nault [13]. Imagine a company consisting of n independent subunits. Denote
by N = {1, . . . , n} the set of such subunits. Each subunit i ∈ N has its own
portfolio, and assume that the other subunits’ portfolios are unknown to i.

At present time, say t0, the company knows exactly how much each sub-
unit’s portfolio is worth. However, at a specific point of time in the future,
say t1, the net worth of the n portfolios are unknown. Denote by V the set of
admissible portfolios and let subunit i’s payoff be modeled by a random vari-
able Xi = riAi ∈ V representing the net worth of i’s investment of Ai dollars
in a portfolio with a stochastic return ri between time periods t0 and t1. Let
X = {X1, . . . ,Xn} denote the companies payoff profile and let X(S) = ∑i∈SXi

be the payoff of the pooled portfolio of coalition S ⊆ N . That is, X(N) is
the payoff of the company as a whole at time t1.

Risk is quantified by a risk measure ρ ∶ V → R. In the following analysis
we will always assume that the risk measure involved is a so-called coherent
risk measure in the sense of Artzner et. al., [4]. In particular, all our examples
will use Expected Shortfall with a degree of confidence of 5% as (coherent)
risk measure and ignore all kinds of transaction costs for simplicity, see e.g.,
[4] or Acerbi and Tasche [1]. Expected Shortfall indicates, for each portfolio,
the amount of riskless capital that should be withheld by the company in
order to be able to cover expected losses given that the payoff is below a
certain threshold value.

To withhold riskless capital can be considered as a cost for the company.
Thus, for each coalition of subunits S ⊆ N, the cost associated with the payoff
X(S) of the pooled portfolio is defined as

c(S) = ρ(X(S)), (1)

with c(∅) = 0 per definition. We say that c(S) is the risk capital of
coalition S ⊆ N . In particular, c(N) is total risk capital of the company
that has to be allocated among the n subunits. As such, the problem can be
modeled as a transferable utility (TU) game, see e.g., Peleg and Sudhölter
[22].

Denote by (N, c), where N is the set of subunits and c is the cost function
determined by (1), a risk capital allocation problem. Let Γ be the set of all
such problems.
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Let Y (N, c) = {y ∈RN ∣ ∑i∈N yi = c(N)} be the set of possible allocations
of the total risk capital c(N). A solution on Γ is a mapping σ which associates
with each problem (N, c) ∈ Γ a subset σ(N, c) of Y (N, c).

One such well-known solution is the core given by

C(N, c) = {y ∈ Y (N, c) ∣∑
i∈S
yi ≤ c(S) for all S ⊆ N}. (2)

The core consists of allocations of risk capital for which no coalition of sub-
units pay more than the risk capital associated with their pooled portfolios
and thereby S does not subsidize other subunits. Mathematically speaking
the core is a n − 1 dimensional polyhedron, i.e., it is a closed and convex set
with flat faces and straight edges.

By Theorem 4 in [13] it is known that if the risk measure ρ is coherent then
the core of the associated risk capital problem is non-empty (i.e., the problem
(N, c) is balanced by the Bondareva-Shapley Theorem, [22]).3 Since (N, c) is
balanced, c(⋅) is subadditive, i.e., c(S∪T ) ≤ c(S)+c(T ) for arbitrary subsets
S,T ⊆ N for which S∩T = ∅. Thus, pooling portfolios reduces the risk capital
in the sense that the risk capital of the pooled portfolio is weakly smaller than
the sum of the risk capital of the individual portfolios. However, Denault
[13] shows that c is not concave (i.e., c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T ) for
arbitrary subsets S,T ⊆ N) when ρ is coherent. Hence, when using Expected
Shortfall or any other coherent risk measure, the corresponding risk capital
allocation game will be (totally) balanced, but not concave.

Example 1: Consider a company with four subunits N = {1,2,3,4} whose
portfolios are long 300 in SP500, long 100 in BMW stock, short 500 in oil
and short 100 in Google stock respectively. Assume that we are interested
in allocating the total risk capital, where the time horizon is 1 day (i.e.
t1 − t0 = 1). In order to estimate the distribution of the returns, we use
the historical one day returns in the period Apr 1, 2010 to Nov 1, 2012
with equal probability.4 When ignoring any kind of transaction costs and
using 5 % expected shortfall as a risk measure, the corresponding risk capital
allocation problem with 2 decimal accuracy is:

c(1) = 8.81, c(2) = 5.08, c(3) = 20.45, c(4) = 3.88

3In fact, the class of risk capital allocation games given by (1) coincides with the class
of totally balanced games, see Theorem 3.4 in [11].

4Data are downloaded from Yahoo Finance.
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c(1,2) = 12.45, c(1,3) = 17.83, c(1,4) = 6.88

c(2,3) = 18.69, c(2,4) = 4.83, c(3,4) = 22.18

c(1,2,3) = 17.70, c(1,2,4) = 10.38, c(1,3,4) = 18.51, c(2,3,4) = 19.87,

c(1,2,3,4) = 17.90

The problem is to share the total risk capital of 17.90 among the four
subunits. The core is illustrated in Figure 1.5 2

Figure 1: The core of the game. xi is the allocated share of subunit i,
i = {1,2,3}

5The core in this example is defined by 14 inequalities and one equation (the total risk
capital has to sum up to exactly 17.90). Subunit 4’s share can be isolated in the equation
and substituted into the inequalities. Then one ends with a three dimensional problem.
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3 The Lorenz solution

In the present section we shall introduce the Lorenz set as a solution con-
cept for risk capital allocation. The Lorenz set is well-known in cooperative
game theory (cf., e.g., Dutta and Ray [15], Dutta [13], Hougaard et al., [20],
Hougaard et al., [21], Arin et al., [2], [3]), but apparently not in the context
of risk capital allocation. In the next section we will argue that the Lorenz
set has important advantages over other existing allocation rules discussed
and analyzed in the literature on risk capital allocation.

For a given allocation y ∈Rn, define the mapping ϕ ∶Rn →Rn by

ϕk(y) = min{∑
i∈S
yi ∣ S ⊆ N, ∣S∣ = k} (3)

for 1 ≤ k ≤ n. Now, let y, y′ ∈ Rn be two allocations then y is said to
Lorenz dominate y′ (written y ≻LD y′) if ϕ(y) ≥ ϕ(y′), where ϕ(y) ≠ ϕ(y′).
With special reference to the core, an allocation y will be called Lorenz
undominated (in the core) if there does not exist a core allocation z ∈ C(N, c)
for which z ≻LD y.

In the present paper we focus on the set of Lorenz undominated alloca-
tions in the core, i.e., the Lorenz set

L(N, c) = {y ∈ C(N, c) ∣/∃ z ∈ C(N, c) ∶ z ⪰LD y}. (4)

Clearly, L(N, c) ⊆ C(N, c) so L(N, c) is non-empty when the core is non-
empty (since C(N,v) is compact and ϕ is continuous). As shown in [15],
L(N, c) is a singleton (i.e., ∣L(N, c)∣ = 1) when c is concave. Moreover, as
shown in [20], y ∈ L(N, c) if and only if there exists a strictly increasing and
strictly concave function u ∶ R → R such that ∑i∈N u(yi) ≥ ∑i∈N u(zi) for all
z ∈ C(N, c)

Proposition 1 below records some additional useful and well-known facts
concerning the Lorenz set.

Proposition 1: Consider a risk allocation problem (N, c),

1. If y∗ = ( c(N)n , . . . , c(N)n ) ∈ C(N, c) then L(N, c) = {y∗}.

2. If y∗ = ( c(N)n , . . . , c(N)n ) /∈ C(N, c), then there exists a unique allocation
z ∈ C(N, c) minimizing the Euclidian distance from y∗ to the core, and
z ∈ L(N, c).

8



3. L(N, c) is connected.

Proof: The first statement is obvious. The second statement is noted in
[3] and can easily be inferred from Theorem 2 in [20] since minimizing the
Euclidian distance from a point in the core to the equal split allocation is
akin to maximizing an increasing and strongly concave function subject to
the core restrictions. The third statement can also be inferred from results
in [20]. Q.E.D.

The facts of Proposition 1 above can be used to construct an algorithm
which determines L(N, c) for any given risk capital allocation problem (N, c),
see Smilgins [26].

Example 1, continued: Using the algorithm of [26] we are able to deter-
mine the Lorenz set of the problem given in Example 1 above. It is given by
a convex combination of the following two core allocations:

(5.55,3.49,7.52,1.33) and (4.46,2.41,8.60,2.42).

This is illustrated graphically in figure 2 below. The point outside the core
is the equal split and the black line on the core surface is the Lorenz set in
this particular problem with the two extreme points mentioned above.

2

4 Coherent allocation rules

In this section we shall examine some desirable properties of solutions to risk
allocation problems. Inspired by Denault’s [13] notion of a coherent allocation
rule (see [13]) we say that a solution σ to risk allocation problems (N, c) is
coherent if it satisfies the following three requirements: 6

1. σ(N, c) ⊆ C(N, c)

2. If, for i, j ∈ N with i ≠ j, that c(S ∪ i) ≤ c(S ∪ j) for all S ⊆ N ∖ {i, j},
then yi ≤ yj for y ∈ σ(N, c).

6Note the difference between the notion of a coherent risk measure and a coherent
allocation rule.
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Figure 2: The Lorenz set

3. If i ∈ N holds riskless capital ki then yi = −ki for y ∈ σ(N, c).

In words, the first requirement states that the solution should respect the
core conditions. The second requirement states that if adding sub-unit j’s
portfolio to any coalition of sub-units S is always more costly (in terms of
risk capital) than adding sub-unit i’s portfolio, then j should also pay at least
as much as i when sharing the total risk capital of the company. The third
requirement states that if some subunit holds a riskless portfolio it should be
paid accordingly when pooled with risky portfolios.

The following observation shows that these three requirements are not
independent.

Observation 2: Any solution satisfying 1, will satisfy 3.

Proof: Consider a subset M ⊆ N of subunits i each holding riskless port-
folios ki and let y ∈ σ(N, c). By 1, ∑i∈M yi ≤ ρ(∑i∈M ki) = ∑i∈M −ki. Moreover,
since ∑i∈M yi+∑j∈N∖M yj = c(N) = c(N∖M)+∑i∈M −ki we have that ∑i∈M yi =
c(N ∖M) −∑j∈N∖M yj +∑i∈M −ki ≥ ∑i∈M −ki since c(N ∖M) −∑j∈N∖M yj ≥ 0
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by 1. Thus ∑i∈M yi = ∑i∈M −ki. Now, by 1, yi ≤ −ki for all i ∈M and thus we
get yi = −ki for all i ∈M . Q.E.D.

We can now show that the Lorenz set is basically coherent by construc-
tion.

Proposition 3: The Lorenz set L(N, c) is coherent.

Proof: L(N, c) satisfies 1, by definition. L(N, c) satisfies 2, by Lemma 1
in [20]. Finally, L(N, c) satisfies 3, by Observation 2 above. Q.E.D.

In the literature on risk capital allocation several other solutions (on
the domain of balanced problems) are well-known and analyzed. These in-
clude; The Shapley value, the Cost-Gap rule, the nucleolus and the Aumann-
Shapley rule, (for definitions, see e.g., [23], [27], [24], [6], respectively).

All these solutions are singletons, but only the latter two are coherent.
Indeed, the nucleolus is a core-allocation rule (1.) and hence also satisfies 3.
by Observation 2. Symmetry (2.) is also satisfied (see e.g., [22]). A serious
drawback of the nucleolus is its computational complexity, especially when
the number subunits becomes large.

The Aumann-Shapley rule has received considerable attention in the lit-
erature. Denault [13] shows that it is coherent when expanding the setup to
allow for fractional players. The big difference between the Aumann-Shapley
rule and the other (singleton) solutions in risk capital allocation problems
is that while they are based on the costs/risks of all possible coalitions of
players, the Aumann-Shapley rule is based on the distribution of the re-
turns themselves. Denault [13] shows (based on Aubin [5]) that in the setup
of risk capital allocation problems with Expected Shortfall as a risk mea-
sure with a degree of confidence of α, player i’s allocated share is given by,
xASi = E[−Xi ∣ ∑i∈N Xi ≤ qα] where qα is the α-quantile of the distribution of
X(N). One of the main drawbacks of the Aumann-Shapley rule is the fact
that it is not always well defined; this happens if the quantile qα is not a
unique number (i.e., in case of non-differentiability at that point).

Example 1, continued: For the problem of Example 1, the Shapley value,
the Cost-Gap rule, the nucleolus and the Aumann-Shapley rule result in the
following allocations of risk capital:

xSh = (2.43,1.44,13.06,0.96),
xCG = (1.79,1.67,12.64,1.80),
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xNUC = (1.81,1.14,13.00,1.95),
xAS = (−0.16,0.04,17.31,0.71).
In all cases there is a much larger spread in payments than for L(N, c)

(obviously) with the Aumann-Shapley allocation as most extreme in this case;
note that subunit 1 is actually paid by the other units even though all units
are in fact holding risky portfolios (albeit satisfying the core conditions). 2

4.1 Other desirable properties

In the following we will investigate some properties which are desirable in
the particular case of risk capital allocation problems. All these properties
are satisfied by the Lorenz solution, but not by any of the four alternative
allocation rules mentioned above.

Consider a problem (N, c) and suppose that C(N, c)∩Rn++ ≠ ∅, i.e., there
exists allocations in the core where all subunits pay a strictly positive amount.
In particular, this implies that all coalitions of subunits hold risky portfolios,
including the individual subunits themselves (i.e., c(S) > 0 for all S ⊆ N).
Since each subunit is supposed to act as an independent profit maximizing
investment unit, it seems reasonable to require that all individual subunits
should be allocated strictly positive cost shares when covering the companies
risk capital c(N). This is also important in light of performance measurement
based on expected return relative to allocated risk capital of the individual
subunits since negative values of such performance ratios are hard to inter-
pret, [13]. Formally,

Conditional Strict Positivity: Suppose C(N, c)∩Rn++ ≠ ∅. Then y > 0 for
y ∈ σ(N, c).

Proposition 4: The Lorenz set L(N, c) satisfies Conditional Strict Positiv-
ity.

Proof: Let y ∈ C(N, c) and suppose there exists a set of k subunits K ⊂ N
for which yi < 0 for i ∈ K. Let ∑i∈K yi = B. By contradiction, suppose that
y ∈ L(N, c). By Theorem 2 in [20] there exists a strictly concave function u
such that y is a solution to the problem:

max z(y) = u(y1) + ... + u(yn)
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s.t. y ∈ C(N, c)

Let x be a another vector where:

xi = yi + ∣yi∣ + ε for all i ∈K

xi = yi − hi(∣B∣ + kε) for all i ∈ N ∖K

where 0 ≤ hi ≤ 1 with ∑i∈N∖K hi = 1 are chosen such that x ∈ C(N, c).
Indeed, this is possible since C(N, c)∩Rn++ ≠ ∅. Because u is a strictly concave
function we must have that z(x) > z(y), contradicting that y ∈ L(N, c).

Q.E.D.

The following example will demonstrate that none of the four allocation
rules mentioned above satisfy Conditional Strict Positivity. Typically vio-
lations happen in case some portfolios are highly negatively correlated. In
the Example 2 below, for instance, some portfolios are perfectly negatively
correlated.

Example 2: Consider a company with four subunits N = {1,2,3,4} all
investing in BMW stock. The portfolios are long 295 for subunit 1 and short
100 for the other subunits. Otherwise the setup is similar to the setup in
Example 1 (i.e. same risk measure, same distribution estimation, same time
horizon). The corresponding risk capital allocation problem with 2 decimal
accuracy is:

c(1) = 14.80, c(2) = 4.94, c(3) = 4.94, c(4) = 4.94

c(1,2) = 9.78, c(1,3) = 9.78, c(1,4) = 9.78

c(2,3) = 9.78, c(2,4) = 9.78, c(3,4) = 9.78

c(1,2,3) = 4.77, c(1,2,4) = 4.77, c(1,3,4) = 4.77, c(2,3,4) = 14.83,

c(1,2,3,4) = 0.25

First, note that C(N, c)∩R++ ≠ ∅ since, for instance, the equal split (here
the unique Lorenz solution) is in the core. Yet, the four allocation rules result
in the following allocations which all yield a negative cost share to subunit
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1:
xSh = (−0.02,0.09,0.09,0.09),
xCG = (−0.38,0.21,0.21,0.21),
xNUC = (−0.38,0.21,0.21,0.21),
xAS = (−14.58,4.94,4.94,4.94).

2

The next property concerns changes in allocated risk capital as a con-
sequence of changes in invested amounts. Suppose subunit i ∈ N invests
additionally I dollars in its original portfolio such that the new payoff be-
comes X ′

i = ri(Ai + I). The individual risk capital of subunit i therefore
becomes ρ(X ′

i) = ρ(Xi) + ρ(riI) because of the perfect correlation. Now,
assume that this move is advantageous for the company as a whole, in the
sense that the total risk capital decreases.

It is then compelling to require that this change by i cannot result in an
additional share of the allocated risk capital exceeding ρ(riI), i.e., the effect
of extra investment on his own portfolio. Otherwise subunit i would not have
incentive to make this additional investment to the benefit of the company
as a whole. The importance of using allocation rules where the benefit of
individual subunits are positively correlated with the worth of the decision
to the company has been emphasized at least since Shubik [25]. Formally,

Advantageous Changes: Let (N, c) and (N, c′) be two problems where c is
based on payoff profile X = {X1, . . . ,Xn} and c′ is based on payoff profile X ′ =
{X1, . . . ,Xi−1,X ′

i ,Xi+1, . . . ,Xn}. If c′(N) < c(N) then σi(N, c′) ≤ σi(N, c) +
ρ(riI).

Proposition 5: The Lorenz set L(N, c) satisfies Advantageous Changes.

Proof: Consider two problems (N, c) and (N, c′) as above where c(N) >
c′(N). By definition we have that c′(S) = c(S) for all S /⊃ {i}. Moreover,
c′({i}) = c({i}) + ρ(riI) and for all other coalitions max[0, c(S) − ρ(riI)] ≤
c′(S) ≤ c(S) + ρ(riI), i.e., the risk of any coalition where i is present can
at most fall by ρ(riI). However, the risk of any coalition can at most be
eliminated, which will be the case if the risk of i’s portfolio and coalition
S ∖ {i}’s portfolio are perfectly negatively correlated. At the same time the
risk of any coalition can maximally yield an extra risk of ρ(riI) which will
be the case when the portfolios are perfectly positively correlated.
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Let d = c(N) − c′(N) denote the decrease in total risk capital due to i’s
portfolio change. Clearly, d ≤ ρ(riI). Let x ∈ L(N, c) and x′ ∈ L(N, c′) and
suppose, by contradiction, that x′i = xi + ρ(riI) + b where b > 0, i.e. i’s cost
share increases by more than ρ(riI). Now, we only need to focus on situations
where the core conditions allow i to get a cost share of x′i = xi + ρ(riI) + b.
Consequently, going from the problem (N, c) to the problem (N, c′) some
subunits will share a total discount of d + b + ρ(riI). Denote the set of these
subunits by T = {j ∣ x′j < xj}. Let T− = {j ∈ T ∣ x′j < x′i} denote the set of
subunits in T that gets a lower cost share than i in x′.

First, assume that T− ≠ ∅. In this case, the core conditions will allow i to
transfer a fraction of b to subunits in T−. To see this note that if we take any
coalition including i, then the core conditions will not be violated since risk
will be transferred within the coalition. In all the coalitions where i is not
present the core conditions in (N, c) and (N, c′) are the same. So, making
the discount a bit smaller will not violate the core conditions either. Because
i can transfer a fraction of b to subunits in T−, we can conclude that x′ is not
a Lorenz allocation by Theorem 2 in [20]. Hence, the contradiction.

Second, assume that T− = ∅. If i gets the lowest cost share among subunits
in T− in the problem (N, c′), this will also be the case in the problem (N, c),
where xi < x′i and the subunits in T do not share the total discount. But then
the subunits in T− in the problem (N, c) can transfer part of their allocated
cost share to i. Thus x is not a Lorenz allocation by Theorem 2 in [20].
Indeed, the core conditions for the coalitions including i increase by no more
than ρ(riI), while i’s cost share increases by ρ(riI) + b. Q.E.D.

Example 2, continued:. Assume that subunit 1 invests 7 dollars extra in its
portfolio, such that it invests long 302 dollars in BMW stock. Consequently,
the new problem is:

c’(1) = 15.15, c’(2) = 4.94, c’(3) = 4.94, c’(4) = 4.94

c’(1,2) = 10.14, c’(1,3) = 10.14, c’(1,4) = 10.14

c’(2,3) = 9.89, c’(2,4) = 9.89, c’(3,4) = 9.89

c’(1,2,3) = 5.12, c’(1,2,4) = 5.12, c’(1,3,4) = 5.12, c’(2,3,4) = 14.83,

c’(1,2,3,4) = 0.10
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For the new problem we get:
xSh = (0.21,−0.04,−0.04,−0.04),
xCG = (0.21,−0.04,−0.04,−0.04),
xNuc = (0.21,−0.04,−0.04,−0.04),
xAS = (15.15,−5.02,−5.02,−5.02).

When subunit 1 invests 7 dollars extra, the Aumann-Shapley rule and
the other three methods allocates subunit 1, 15.15-(-14.58)=29.73 and 0.21-
(-0.38)=0.59 dollars extra, respectively. Thus, even though subunit 1’s move
was advantageous for the company from the perspective of risk, 1 has to pay
more and even withhold an amount that is larger than the risk capital amount
of the entire company itself. Subunits 2,3 and 4 are all paid by subunit 1,
which will only be fair if they hold riskless portfolios. Thus, none of the
four allocation rules satisfy Advantageous Changes. On the other hand, the
Lorenz set does - here coinciding with the equal split, i.e.

L(N, c′) = (0.025,0.025,0.025,0.025).
2

The next property concerns a situation where the aggregate risk capital
of the company is zero. A well known fact is that when combining securities
with negative correlation, the risk can be eliminated altogether. What should
a fair allocation method do in this extreme case? It seems natural to suggest
that no subunit should withhold any amount of risk capital, as the overall
aim of the exercise is to be able to cover potential losses of the company of
which there are none. Formally,

Zero Aggregate Risk: Assume all subunits in N hold risky portfolios, i.e.,
c(i) > 0 for all i ∈ N . If c(N) = 0 then y = 0 for y ∈ σ(N, c).

Proposition 6: The Lorenz set L(N, c) satisfies Zero Aggregate Risk.

Proof: If all subunits hold risky portfolios then c(S) ≥ 0 for all S ⊆ N .
By Proposition 1.1., L(N, c) = {(0, . . . ,0)}. Q.E.D.

Example 2, continued:. Assume that subunit 1 now changes its invested
amount to be exactly 300. In this case risk is completely eliminated. Conse-
quently, the new problem is:

c(1) = 15.05, c(2) = 4.94, c(3) = 4.94, c(4) = 4.94

16



c(1,2) = 10.03, c(1,3) = 10.03, c(1,4) = 10.03

c(2,3) = 9.89, c(2,4) = 9.89, c(3,4) = 9.89

c(1,2,3) = 5.02, c(1,2,4) = 5.02, c(1,3,4) = 5.02, c(2,3,4) = 14.83,

c(1,2,3,4) = 0

The Aumann-Shapley rule here is undefined while the Shapley value, the
Cost-Gap and the nucleolus all result in the same allocation:

xSh = xCG = xNuc = (0.11,−0.04,−0.04,−0.04).
Thus, Zero Aggregate Risk is not satisfied by any of the four methods.

On the other hand, the Lorenz set consists of one point, namely where no
subunit get allocated any risk, i.e., L(N, c) = (0,0,0,0).

2

5 Final remarks

This paper introduces a well known concept in game theory, the Lorenz solu-
tion, to risk capital allocation problems. The Lorenz set is coherent (extend-
ing Denault’s definition to set valued solutions) and we further demonstrated
that there are many cases where the Lorenz solution give much more rea-
sonable results than other well-known coherent allocation rules such as the
Aumann-Shapley method and the nucleolus. What we mean by reasonable
is here mainly embodied in our axioms Conditional Strict Positivity, Advan-
tageous Changes and Zero Aggregate Risk - axioms which are also violated
other (non-coherent) traditional methods often discussed in finance: for in-
stance, the Cost-Gap method violates all three axioms as demonstrated by
the examples above; the β-method violates Advantageous Changes and Con-
ditional Strict Additivity.

In particular, Advantageous Changes represents a type of property en-
suring proper incentives of the subunits but in a different way than the tra-
ditional monotonicity axioms. This indicates a way to avoid the type of
impossibility result presented in Csóka and Pintér [12] building on Young’s
property of Strong Monotonicity.7

7In [12] it is shown that there is no coherent allocation rule which satisfies strong
monotonicity, in the sense that if c(S) − c(S ∖ i) ≥ c′(S) − c′(S ∖ i) for all S ⊇ i then
σi(N, c) ≥ σi(N, c

′
).
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Choosing a set valued solution differs from standard methods by intro-
ducing a second step selection problem for the decision maker. However,
various methods from the literature on Multiple Criteria Decision Making
(MCDM, see e.g., Bogetoft and Pruzan, [8]) can be used to assist further
selection from the Lorenz set in accordance with the decision makers prefer-
ences. For instance, it is straightforward to select the core allocation having
the smallest distance to the equal split allocation which will be Lorenz un-
dominated, but obviously more sophisticated interactive approaches can be
applied. Embedding the Lorenz solution in an interactive MCDM framework
is left for future research.
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