
Appendix C: Infinite rotations 

1. Relaxing some of the basic assumptions 

1.1. Incorporating pollution 

1.1.1. A private optimum 

Here the aquaculture producer maximizes: 
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With T and st as control variables, the first-order conditions are:  
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(C.2) and (C.3) can be reduced to: 
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To find the private optimal pollution level, s , and rotation time, Tp*, we need to solve (C.4) and 

(C.5) as two equations with two unknowns.  

1.1.2. A social optimum 

The social planner maximizes: 
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The first-order conditions are: 
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(C.7) and (C.8) can be reduced to: 
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To find the social optimal pollution level, *ts , and rotation time, , Ts*, we have two solve (C.9) and 

(C.10) as two equations with two unknowns. Furthermore, when comparing (C.4) with (C.9) we see 

that Ts*> Tp*, while *ts s based on (C.5) and (C.10). 

1.1.3. Optimal regulation 

Since Ts*> Tp*, we need a subsidy to increase the private rotation time. By comparing (C.4) and 

(C.9) we get that: 
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Comparing (C.5) and (C.10) we see that the following marginal tax on pollution provides an 

optimum: 
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(C.12) is exactly a Pigovian tax. 

1.2. Fixed costs 

1.2.1. A private optimum 

Now the aquaculture producer maximizes: 
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With T as control variable, the first-order condition is:  
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(C.14) reduces to:  
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1.2.2. A social optimum 

The social planner maximizes: 
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Using T as control variable, the first-order condition is: 
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(C.17) can be reduced to: 
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1.2.3. Optimal regulation 

By comparing (C.15) and (C.18) and using the same procedure as in appendix B, we get the 

following marginal tax: 
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1.3. Running costs 

1.3.1. A private optimum 

Here the problem of the aquaculture producer becomes: 
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When using T as control variable, we obtain the following the first-order condition:  
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(C.21) reduces to:  
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1.3.2. A social optimum 

The social planner maximizes: 
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The first-order condition is: 
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(C.24) can be reduced to: 
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1.3.3. Optimal regulation 

By comparing (C.22) and (C.25) we get the following marginal tax: 
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1.4. Another formulation of quality 

1.4.1. A private optimum 

Now the aquaculture producer’s objective function is: 
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With T as control variable, the first-order condition is:  
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(C.28) reduces to:  
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1.4.2. A social optimum 

The social planner’s maximization problem is: 
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By using T as control variable, the first-order condition is: 
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(C.31) can be reduced to: 
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1.4.3. Optimal regulation 

By comparing (C.29) and (C.32) we get the following marginal tax: 
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1.5. Private and social discount rates   

1.5.1. A private optimum 

Now the aquaculture producer’s optimization problem is: 
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With T as control variable, the first-order condition is:  
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(C.35) reduces to:  
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1.5.2. A social optimum 

The social planner maximizes: 
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The social planner’s first-order condition is: 
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(C.38) can be reduced to: 
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 1.5.3. Optimal regulation 

By comparing (C.36) and (C.39) we get the following marginal tax: 
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