Appendix C: Infinite rotations
1. Relaxing some of the basic assumptions
1.1. Incorporating pollution
1.1.1. A private optimum
Here the aquaculture producer maximizes:
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With T and st as control variables, the first-order conditions are:
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To find the private optimal pollution level, s, and rotation time, T,*, we need to solve (C.4) and
(C.5) as two equations with two unknowns.

1.1.2. A social optimum

The social planner maximizes:
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(C.7) and (C.8) can be reduced to:
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To find the social optimal pollution level, s, *, and rotation time, , Ts*, we have two solve (C.9) and
(C.10) as two equations with two unknowns. Furthermore, when comparing (C.4) with (C.9) we see

that Ts*> Tp*, while s* <S based on (C.5) and (C.10).
1.1.3. Optimal regulation

Since Ts*> T,*, we need a subsidy to increase the private rotation time. By comparing (C.4) and
(C.9) we get that:
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Comparing (C.5) and (C.10) we see that the following marginal tax on pollution provides an
optimum:
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(C.12) is exactly a Pigovian tax.
1.2. Fixed costs
1.2.1. A private optimum

Now the aquaculture producer maximizes:
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With T as control variable, the first-order condition is:
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1.2.2. A social optimum

The social planner maximizes:
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Using T as control variable, the first-order condition is:
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1.2.3. Optimal regulation

By comparing (C.15) and (C.18) and using the same procedure as in appendix B, we get the
following marginal tax:
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1.3. Running costs
1.3.1. A private optimum

Here the problem of the aquaculture producer becomes:
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When using T as control variable, we obtain the following the first-order condition:
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1.3.2. A social optimum

The social planner maximizes:
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The first-order condition is:
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(C.24) can be reduced to:
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1.3.3. Optimal regulation

By comparing (C.22) and (C.25) we get the following marginal tax:
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1.4. Another formulation of quality

1.4.1. A private optimum

Now the aquaculture producer’s objective function is:
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With T as control variable, the first-order condition is:
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The social planner’s maximization problem is:
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By using T as control variable, the first-order condition is:
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1.4.3. Optimal regulation

By comparing (C.29) and (C.32) we get the following marginal tax:
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1.5. Private and social discount rates
1.5.1. A private optimum

Now the aquaculture producer’s optimization problem is:
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With T as control variable, the first-order condition is:
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1.5.2. A social optimum

The social planner maximizes:
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The social planner’s first-order condition is:
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(C.38) can be reduced to:
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1.5.3. Optimal regulation
By comparing (C.36) and (C.39) we get the following marginal tax:
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