
Appendix A: A single rotation 

1. Basic model 

1.1. A private optimum 

The problem of the aquaculture producer can be written as: 
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With T as control variable, the first-order condition becomes: 
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(A.2) can be reduced to:  
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Rewriting (A.3) gives: 
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1.2. A social optimum 

The social planner problem is:  
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Using T as control variable, the first-order condition is: 
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(A.6) can be rewritten as: 
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We can also rewrite (A.7) as: 
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1.3. Optimal regulation 

By comparing (A.3) and (A.7), we find that the optimal marginal tax becomes: 
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2. Relaxing some of the basic assumptions 

2.1. Incorporating pollution 

2.1.1. A private optimum 

The aquaculture producer now solves: 

[ ( , ( ), ) ]rT
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With T and st as control variables, the following first-order conditions are reached:  

 [ ] ( , ( ), ) 0rT rT

t

P P q
e re P T q T s

T q T

   
  

  
  (A.11) 

 0rT

t

P
e

s





     (A.12) 

(A.11) and (A.12) can be reformulated as:  
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To find the private optimal pollution level, s , and rotation time, , Tp*, we need to solve (A.13) and 

(A.14) as two equations with two unknowns.  

2.1.2. A social optimum 

Now the objective function is:  
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When using T and st as control variables, the first-order conditions are obtained:  
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(A.16) and (A.17) can be reduced to:  
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To find the social optimal pollution level, *ts , and rotation time, , Ts*, we have two solve (A.18) 

and (A.19) as two equations with two unknowns. Furthermore, comparing (A.14) and (A.19), we 

observe that *ts s , and by comparing (A.13) and (A.18), we find that Ts* > Tp*.  

2.1.3. Optimal regulation 

Since Ts* > Tp*, we need a marginal subsidy to increase the rotation time. Comparing (A.14) and 

(A.18), the marginal subsidy is: 
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Because 
ts s a tax on pollution is required to adjust behavior, and by comparing (A.13) and 

(A.18), we get the following marginal tax: 

 (́ *)t

t

V
D s

s





    (A.21) 

(A.21) is a Pigovian tax. 

2.2. Fixed costs 

2.2.1. A private optimum 

The aquaculture producer now solves: 
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With T as control variable, the first-order condition is:  
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(A.23) can be written as:  
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2.2.2. A social optimum 

The social planner objective function becomes:  
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With T as control variable, the first-order condition is:  
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(A.26) reduces to:  
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2.2.3. Optimal regulation 

By comparing (A.24) and (A.27), we find the marginal tax: 

 ( ) ( )
U

D T r FS FP
T


  


    (A.28)  

2.3. Running costs 

2.3.1. A private optimum 

The aquaculture producer now maximize: 
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Using T as control variable, the following first-order condition applies:  
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(A.30) can be written as:  
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2.3.2. A social optimum 

The present value of the current and future welfare becomes:  
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With T as control variable, the first-order condition is:  
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(A.33) reduces to:  
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3.3.3. Optimal regulation 

By comparing (A.31) and (A.34), we get the marginal tax: 
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2.4. Another formulation of quality 

2.4.1. A private optimum 

The aquaculture producer now solves: 
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The following first-order condition is obtained:  
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(A.37) can be written as:  
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2.4.2. A social optimum 

The discounted welfare maximization problem is:  
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Using T as control variable, we obtain the following first-order condition:  
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(A.40) reduces to:  
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2.4.3. Optimal regulation 

Now from (A.38) and (A.41), we get the marginal tax: 
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2.5. Private and social discount rates   

2.5.1. A private optimum 

The aquaculture producer maximizes: 
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With T as control variable, the first-order condition is:  
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(A.44) can be written as:  
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2.5.2. A social optimum 

The social planner’s objective function becomes:  
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The first-order condition is:  
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(A.47) reduces to:  
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2.5.3. Optimal regulation 

By comparing (A.45) and (A.48), we obtain the following marginal tax: 
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