Appendix A: A single rotation

1. Basic model

1.1. A private optimum

The problem of the aquaculture producer can be written as:

Max[P(T,q(T))e "]

With T as control variable, the first-order condition becomes:
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(A.2) can be reduced to:
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Rewriting (A.3) gives:
oP oP oq
oT _,.__oqoar
P(T,q(T)) P(T,q(T))

1.2. A social optimum

The social planner problem is:

Max[P(T,q(T))e ™" —]e“D(x)dx]

Using T as control variable, the first-order condition is:
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(A.6) can be rewritten as:
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We can also rewrite (A.7) as:
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1.3. Optimal regulation
By comparing (A.3) and (A.7), we find that the optimal marginal tax becomes:
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2. Relaxing some of the basic assumptions
2.1. Incorporating pollution
2.1.1. A private optimum

The aquaculture producer now solves:
MaX[P(qu(T)lst)e_rT] (AlO)

With T and st as control variables, the following first-order conditions are reached:
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(A.11) and (A.12) can be reformulated as:
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To find the private optimal pollution level, 5, and rotation time, , Ty*, we need to solve (A.13) and
(A.14) as two equations with two unknowns.

2.1.2. A social optimum
Now the objective function is:
Max[P(T,q(T),s,)e " —D(s)e ] (A-15)

When using T and st as control variables, the first-order conditions are obtained:
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(A.16) and (A.17) can be reduced to:
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To find the social optimal pollution level, s, *, and rotation time, , Ts*, we have two solve (A.18)

and (A.19) as two equations with two unknowns. Furthermore, comparing (A.14) and (A.19), we
observe that s, *< S, and by comparing (A.13) and (A.18), we find that Ts* > Tp*.

2.1.3. Optimal regulation

Since Ts* > Tp*, we need a marginal subsidy to increase the rotation time. Comparing (A.14) and
(A.18), the marginal subsidy is:
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Because s, <§ atax on pollution is required to adjust behavior, and by comparing (A.13) and
(A.18), we get the following marginal tax:
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(A.21) is a Pigovian tax.
2.2. Fixed costs

2.2.1. A private optimum

The aquaculture producer now solves:

Max[(P(T,q(T)) - FP)e™] (A.22)

With T as control variable, the first-order condition is:
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(A.23) can be written as:
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2.2.2. A social optimum

The social planner objective function becomes:

Max[(P(T,q(T)) - FS)e ™" —T[e'XD(x)dx] (A.25)



With T as control variable, the first-order condition is:
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(A.26) reduces to:
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2.2.3. Optimal regulation
By comparing (A.24) and (A.27), we find the marginal tax:
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2.3. Running costs
2.3.1. A private optimum

The aquaculture producer now maximize:
T
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Using T as control variable, the following first-order condition applies:
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(A.30) can be written as:
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2.3.2. A social optimum

The present value of the current and future welfare becomes:
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With T as control variable, the first-order condition is:

R RNy _

[aT oq oT

(A.33) reduces to:
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3.3.3. Optimal regulation
By comparing (A.31) and (A.34), we get the marginal tax:
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2.4. Another formulation of quality
2.4.1. A private optimum

The aquaculture producer now solves:
Max[(RP(T)-C(T))e ™" ]

The following first-order condition is obtained:
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(A.37) can be written as:
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2.4.2. A social optimum

The discounted welfare maximization problem is:
T
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Using T as control variable, we obtain the following first-order condition:
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2.4.3. Optimal regulation
Now from (A.38) and (A.41), we get the marginal tax:
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2.5. Private and social discount rates
2.5.1. A private optimum

The aquaculture producer maximizes:
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Max[P(T,q(T)e "]

With T as control variable, the first-order condition is:
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2.5.2. A social optimum

The social planner’s objective function becomes:
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The first-order condition is:
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2.5.3. Optimal regulation

By comparing (A.45) and (A.48), we obtain the following marginal tax:
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