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Abstract

Most research questions in agricultural and applied economics are of a causal nature, i.e.,

how one or more variables (e.g., policies, prices, the weather) affect one or more other

variables (e.g., the welfare of individuals or the society, the demanded or produced quan-

tity, pollution). Only a small number of these research questions can be studied with

economic experiments such as randomised controlled trials (RCTs), lab experiments or

lab-in-the-field experiments. Hence, most empirical studies in agricultural and applied

economics use observational data. However, estimating causal effects with observational

data requires appropriate research designs and convincing identification strategies, which

are usually very difficult or even impossible to devise. Likely as a consequence, in the

applied economics literature, it can commonly be observed that results are interpreted as

causal despite lacking a robust identification strategy, which has contributed to a credi-

bility crisis in economics research. This paper provides an overview of various approaches

that are frequently used in agricultural and applied economics to estimate causal effects

with observational data. It then provides advice and guidelines for agricultural and ap-

plied economists who are intending to estimate causal effects with observational data,

e.g., how to assess and discuss the chosen identification strategies in their publications.

Keywords: causal inference, observational data, instrumental variables, difference in

differences, regression discontinuity

JEL codes: C21, C23, C24, C26, C51, C52
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1 Introduction

Today, around 50% of empirical economics articles focus on causal inference (Imbens,

2024). However, a commonly observed problem in empirical economics research is that

econometric designs are not suitable for identifying causal effects. Despite this, the result-

ing estimates are interpreted as such.1 Therefore, reported results may often erroneously

reflect the parameters that have been estimated (Gibson, 2019). Estimates obtained with

Ordinary Least Squares (OLS), matching approaches, or difference-in-differences (DID)

methods based on observational data may overstate the effect by 20–82% compared to

causal estimates based on an experiment (McKenzie et al., 2010). For instance, Wuepper

et al. (2021) find a robust positive association between family farming and rural employ-

ment that remains even in an instrumental-variable regression. However, the association

disappears in a panel data regression with region- and year-fixed effects, suggesting that

the entire cross-sectional association is spurious.

Therefore, thorough consideration of causality is of the utmost importance when con-

ducting empirical economics research (Imbens, 2024). The misinterpretation of simple

associations as causal effects, together with insufficient robustness and replicability of

empirical analyses have led to a “credibility revolution” in quantitative economics re-

search and a call for higher standards in statistical identification (Angrist and Pischke,

2010; Bellemare, 2012; Gibson, 2019).2 While the “credibility revolution” has its origin

in labour economics, it has also reached agricultural and applied economics, albeit with

a delay (Bellemare, 2012). Here, it can still frequently be observed that empirical results

that are used to test specific hypotheses on the relationship between economic variables

are interpreted causally using terms such as “effect” or “impact” although the underly-

ing research design and econometric framework are not based on a credible identification

strategy, or at least not a sufficiently described and motivated identification strategy.

For example, some studies use OLS or matching methods, which rely on a selection-on-

observables assumption, in a context with strong selection-on-unobservables. The use of

these methods possibly moves the estimates in the direction of the actual causal effect

but often not sufficiently far that the estimates can be causally interpreted. Other exam-

ples are studies that use a method based on instrumental variables (IVs), such as 2-stage

least squares (2SLS) or endogenous switching regression, but do not sufficiently discuss or

justify the validity of the method and the IVs. Therefore, the mere application of an IV

approach without sufficient verification of the underlying assumptions, especially regard-

1A current additional issue that is contributing to the problem is p-hacking and the related p-value
debate (e.g., Ioannidis and Doucouliagos, 2013; Heckelei et al., 2023) as well as other issues of statistical
malpractice.

2More general factors related to the credibility of results include insufficient sample size, insufficient
standardisation of variable definitions across studies, or exploratory research which lacks a motivation
regarding the selection of tested relationships (Ioannidis and Doucouliagos, 2013). The latter is also
known as Hypothesising After the Results are Known (HARKing), which can result in misleading
conclusions or biased and less replicable results. See Ioannidis and Doucouliagos (2013) for a more
detailed discussion of these drivers of incredibility.
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ing the selected instrumental variables, is often falsely regarded as a sufficient condition

for allowing the causal interpretation of the results. Incorrect use of causal identification

approaches may even make the estimate worse and move it away from the actual causal

effect. Examples are an erroneous null-finding because the parallel trends assumption for

the chosen DID estimator does not hold, or an exaggerated statistical significance because

the instrumental variable does not produce a strong first stage.

The correct identification of causal effects is particularly relevant for agricultural eco-

nomics research because stakeholders such as policy makers, agribusinesses, or farmers

often base real-world decisions on research results. Thus, incorrect or overestimated in-

terpretations of results may lead to the misallocation of private or public funds (Finger

et al., 2023). Hence, empirical agricultural economics papers that aim to identify causal

effects should include a clear description and justification of the underlying “identification

strategy”. This refers to the identification of the exogenous variation in an endogenous

covariate or treatment variable of interest, i.e., the part of the variation in this variable

that is not related to unobservable factors (e.g., Gibson, 2019; Lal et al., 2024). Only

for this part of the variation in the endogenous covariate or treatment variable is it pos-

sible to say that it affects the dependent variable (e.g., Gibson, 2019). Moreover, the

limitations of the identification strategy should be clearly outlined and possible implica-

tions for the reliability of the results should be investigated.3 If a method for addressing

the non-experimental nature of a data set is used, the added value compared to classical

approaches such as OLS should be pointed out. If the added value cannot be clearly

highlighted, it may be preferable to stick with OLS estimation and interpret the results

as associations.

The “gold standard” for analysing causal research questions is randomised controlled

trials (RCTs) (Gibson, 2019). However, most of the (causal) research questions in agri-

cultural and applied economics cannot be answered with experiments because they would

be problematic or infeasible for various reasons. For example, randomly assigning import

tariffs, randomly assigning different education levels to future farmers at their birth, in-

creasing food prices in randomly selected regions, or restricting food aid to specific regions

while excluding others that are also in need (Buchanan-Smith et al., 2016, p. 36) would

either be infeasible, impractical or unethical4. Even in the relatively rare cases in which

experimental methods can be applied, their results often have important limitations. For

example, RCTs are usually restricted to narrow cases and may suffer from non-compliance

with treatment. In addition, it is difficult to identify the mechanisms behind the cause-

3In addition, the external validity of the results should be outlined and discussed, e.g., whether the
results that are based on a specific group of economic agents such as farmers or consumers in a
specific region or country may also be valid for other groups of economic agents such as farmers or
consumers in other regions or countries. However, the discussion of external validity is out of the
scope of this paper, and we only discuss internal validity.

4Note that even if such experiments were feasible, it may be hard to prevent the non-treated group
from becoming informed about the treatment of the intervention group (Buchanan-Smith et al., 2016;
Koppenberg et al., 2023).
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effect interplay (Quisumbing et al., 2020; Koppenberg et al., 2023; Todd and Wolpin,

2023). However, highly relevant research questions should not be neglected just because

they cannot be answered by applying experimental methods. Instead, observational data

needs to be used to answer these research questions as thoroughly as possible.

This paper discusses various research designs and empirical methods that are frequently

used in agricultural and applied economics to estimate causal effects with observational

data. These discussions should help researchers, analysts, and reviewers assess the suit-

ability of these empirical approaches in their specific analysis, choose the most appropriate

approach, justify their choice of approach, and interpret their results appropriately. There-

fore, we extend previous literature that provides overviews (Imbens, 2024) or guidelines

on how to conduct econometric identification methods using instrumental variables (e.g.,

Jiang, 2017; Young, 2022; Lal et al., 2024) for different disciplines, and tailor our guide-

lines to research questions and the commonly used econometric approaches in agricultural

and applied economics.

The following section discusses the use of various methods that are based on the ‘se-

lection on observables’ identification strategy such as ordinary-least squares (OLS) and

matching methods (e.g., propensity score matching). The third section explores meth-

ods that are based on instrumental variables (or exclusion restrictions) such as 2SLS

regression and endogenous switching regression. The fourth section discusses fixed-effects

estimations and difference-in-differences (DiD) approaches, while the fifth section exam-

ines regression discontinuity designs.5 Finally, the sixth section concludes the paper and

provides some general guidelines for agricultural and applied economics research.

2 Selection on Observables

The selection-on-observables identification strategy is based on the assumption that we

observe and control for all variables that are correlated with both the treatment and the

error term. This implies that there are no unobserved factors that are correlated with

the treatment and affect the outcome through pathways that are not blocked by control

variables. This assumption is also sometimes called conditional independence assumption

(CIA), conditional ignorability, or conditional unconfoundedness.

Classical regression analyses (e.g., ordinary least squares (OLS), logit, probit, tobit, or

Poisson regression) can be affected by three potential sources of statistical endogeneity:6

5The synthetic control method (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015) is a further
method for estimating causal effects with observational data which has recently become very popular
in the social sciences. As this method is very rarely used in agricultural economics, we do not provide
guidelines for this method but instead refer to the excellent guidelines provided by Abadie (2021).

6In this paper, we focus on the endogeneity of explanatory variables. However, all other assumptions that
are required for obtaining unbiased and/or consistent estimates should also be fulfilled and discussed
when presenting econometric analyses. For instance, the functional form used in the econometric
analysis should resemble the relationship between the explanatory variables and the dependent variable
in the population. Furthermore, the observations used for the estimation should be a random sample
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(a) omitted variables / unobserved heterogeneity; (b) measurement error (any type of

measurement error in the explanatory variable or non-random measurement error in the

dependent variable), and (c) reverse causality / simultaneity from which it follows that the

dependent variable also influences the explanatory variable of interest. When discussing

potential endogeneity in a regression analysis, it is advisable to focus on each of the three

potential reasons separately (see, e.g., Bellemare and Novak, 2017). Theoretically, all the

explanatory variables must be uncorrelated with the error term, while in practice the

discussion of endogeneity usually focuses on one or a few explanatory variables that are of

particular interest for the research question, e.g., treatment variables. If a control variable

is correlated with the error term, the bias of the estimated coefficient(s) of interest depends

on the relationship between this endogenous control variable and the explanatory variable

of interest, i.e., whether there is a direct correlation or indirect relationship through other

control variables (see Frölich, 2008; Bellemare, 2015, the latter provides an illustrative

example with only one control variable).7

Whether a selection-on-observables identification strategy is feasible can, for example,

be assessed by using Directed Acyclic Graphs (DAG). With DAGs, one can assess whether

it is possible to find a set of (observed) control variables so that all “backdoor paths” be-

tween the treatment variable and the outcome variable are blocked (see, e.g., Morgan

and Winship, 2014). A DAG can also be used to determine which variables should not

be used as control variables, i.e., variables on the causal path from the treatment vari-

able to the outcome variable (“bad controls”). If one or more of the “backdoor paths”

cannot be blocked, i.e., there is at least one backdoor path that does not include any

observed variable, one can use the DAG to consider whether the “front-door criterion”

or an instrumental-variable approach (see following section) can be used to estimate a

causal effect (see, e.g., Bellemare et al., 2024, for an example).8

Some studies aim to address unobserved heterogeneity by using a control variable

that indicates the marginal utility of joining or leaving the ‘treatment’ (Verhofstadt and

Maertens, 2014; Bellemare and Novak, 2017; Ruml and Qaim, 2021; Aı̈hounton and Hen-

ningsen, 2024). Theoretically, this approach seems promising, but in practice it can be

problematic because the control variable is usually observed after the decision to partic-

ipate in the treatment has been made and, thus, it can be influenced by the treatment

itself, which can introduce endogeneity (Aı̈hounton and Henningsen, 2024).

Some empirical researchers try to address endogeneity by using lagged values instead

of concurrent values of explanatory variables. Bellemare et al. (2017) show theoreti-

cally that using lagged values of explanatory variables addresses endogeneity only under

of the relevant population, while deviations from random sampling, e.g., non-proportional stratified
random sampling, should be appropriately addressed in the econometric analysis. Furthermore, what
the used data actually measure and what the results really imply should also be correctly interpreted
(Gibson, 2019).

7Regarding the interpretation of the coefficients of covariates see Westreich and Greenland (2013).
8Several online and offline software tools for visualising and analysing DAGs exist. One of these tools
is the open-source software DAGitty (https://www.dagitty.net/).
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the untestable assumption of “no dynamics among unobservables”. Their Monte Carlo

simulation shows that using lagged values of explanatory variables can result in substan-

tially biased estimates and incorrect inference even if there are only low levels of dynamics

among unobservables (Bellemare et al., 2017). Providing convincing arguments that there

are no dynamics in any unobservable variables seems to be very difficult or impossible for

most empirical studies.

Using matching methods such as propensity score matching (PSM)9 or inverse proba-

bility weighting for estimating causal effects with observational data is basically based on

the same identifying assumptions as regression methods (e.g., Angrist and Pischke, 2009;

Blattman, 2010; Mullally and Chakravarty, 2018). Therefore, the same discussion as for

the use of regression methods is required. The same applies to the augmented inverse

propensity weighted (AIPW) estimator which is ‘doubly-robust’ as it basically requires

the same identification strategy as an OLS regression (e.g., Kurz, 2022, equation 1).

There are methods for assessing the sensitivity of the results to unobserved heterogene-

ity (e.g., Oster, 2019; Diegert et al., 2023), which have been used often in recent applied

economics research. However, these methods are, in general, based on bold assumptions,

and it is difficult or impossible to assess whether these assumptions are fulfilled in a specific

empirical application. However, when applying a selection-on-observables identification

strategy, these methods can contribute to assessing the suitability of the identification

strategy if their assumptions are discussed appropriately and their results are interpreted

carefully.

Classical regression methods usually rely on strict assumptions about the functional

form of the relationship between treatment variables, control variables and the dependent

variable. These restrictive assumptions can be relaxed by using nonparametric regres-

sion methods, most of the available matching methods, or machine learning approaches.

While machine learning methods have rapidly advanced and are being increasingly used

in agricultural and applied economics, it is important to point out that most machine

learning methods are unsuitable when they are used directly to estimate causal effects

even if all variables that are correlated with both the outcome and the treatment vari-

able are observed. This is because machine learning methods are generally designed for

prediction and not the direct estimation of causal relationships. For example, machine

learning approaches for variable selection (such as Lasso) select the subset of covariates

that optimises out-of-sample prediction performance, but this selection likely introduces

omitted-variable biases as it drops highly correlated control variables, including covariates

that are correlated with both the outcome and the treatment variable.

However, machine learning methods can be used within established econometrics frame-

works for causal identification such as under the selection-on-observables assumption or

for IV estimation (see Section 3.3). These methods are then called “causal machine learn-

9King and Nielsen (2019) point out that “propensity scores should not be used for matching” and that
other matching methods are more suitable than PSM.

6



ing.” Despite this name, it should be clear that these methods are not new concepts

for causal identification but rather extensions of the established econometrics frameworks

of causal identification in which specific parts are replaced by machine learning meth-

ods. Hence, they come with the same identification assumptions that apply to “classical”

econometric approaches and, thus, the same requirements to carefully consider and moti-

vate an appropriate identification strategy. The basic idea of causal machine learning is to

leverage the predictive capabilities of machine learning methods and their flexibility to ap-

proximate potentially complex relationships within these frameworks (Storm et al., 2020;

Baylis et al., 2021). For example, under the selection-on-observables assumption, causal

machine learning methods can be used to relax restrictive functional form assumptions

such as in the case of Double/Debiased Machine Learning (DML) (Chernozhukov et al.,

2018), which assumes that the outcome model is a separable additive function, but that

treatment effects, the influence of controls on outcomes, and the treatment assignment

are unknown nonlinear functions. The approach allows the use of any machine learn-

ing algorithm to approximate these nonlinear functions and to derive average treatment

effects.

The “Causal Forests” method (Wager and Athey, 2018), which is a special case of

Generalised Random Forests (Athey et al., 2019), extends the DML approach allowing

the estimation of heterogeneous treatment effects, i.e., treatment effects that depend on

observed characteristics (conditional average treatment effects, CATE). From an applied

perspective, a crucial advantage is that treatment heterogeneity is estimated in a transpar-

ent and data-driven way and thus avoids the need to predefine and potentially cherry pick

treatment groups. In agricultural economics, Causal Forests have already been applied in

various contexts to study treatment heterogeneity (e.g., Deines et al., 2019; Stetter et al.,

2022; Deines et al., 2023; Schulz et al., 2024).

In summary, when relying on a selection-on-observables identification strategy, we sug-

gest doing the following (in addition to following the general suggestions that we provide

in Section 6):

• Clearly state the assumptions that the chosen method and model specification re-

quire for obtaining unbiased and/or consistent estimates.

• Use a DAG to find a suitable model specification (e.g., which control variables

to include and which not to include) and to discuss the credibility of the chosen

identification strategy.

• Separately discuss the three potential sources of statistical endogeneity: (a) omit-

ted variables / unobserved heterogeneity, (b) measurement error, and (c) reverse

causality / simultaneity.

• Discuss the potential statistical endogeneity not only of the explanatory variable of

interest but also of the control variables.
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• Consider using methods for assessing the sensitivity of the results to unobserved

heterogeneity.

• Consider using methods that do not rely on strict parametric assumptions.

3 Instrumental-Variable Methods

Instrumental-variable methods are often used in cases in which selection on observables

cannot be justified (Lal et al., 2024). We define ‘instrumental-variable (IV) methods’ in

a broad sense. The first part of this section refers to linear IV and 2-stage least squares

(2SLS) regression (which is identical to IV-regression if the number of IVs10 is equal to

the number of endogenous regressors), while Section 3.1 refers to other estimators that

also rely on IVs, including machine-learning IV methods. In Section 3.2, we present a

brief overview of special types of instruments, while Section 3.3 provides practical advice

on using IV methods.

The assumptions required by IV approaches are sophisticated and difficult to test em-

pirically (Lal et al., 2024). However, this does not imply that we want to discourage

their use, rather our aim is to provide some suggestions and tools on how to implement

credible IV-based identification strategies in empirical research. This is important as in-

valid instruments can exacerbate the problem, so that the bias in the 2SLS estimator

even exceeds the OLS endogeneity bias (Lal et al., 2024). By construction, IV estimates

are less precise than OLS estimates. Lal et al. (2024) show that 2SLS estimates have,

on average, six times higher standard errors than OLS estimates although this decreases

with instrument strength.11

Using an instrumental-variable approach to estimate a causal effect is possible if one

has at least as many instrumental variables as endogenous regressors. These instrumental

variables must fulfil the following two criteria: (a) they must be “relevant”, i.e., strongly

related to the endogenous regressors and (b) they must be statistically “exogenous”, i.e.,

not related to the error term (exclusion restriction).

The first criterion can be empirically investigated with tests for weak instruments.

Traditionally, an instrumental variable was considered to be relevant (i.e., not weak) if

an F test of its relevance in the first-stage regression had a test statistic of 10 or higher

(Staiger and Stock, 1997). However, more recent research indicates that a test statistic

of 10 is insufficient in most empirical applications. For instance, Keane and Neal (2024)

show that OLS estimates are often closer to the ‘true’ causal effects than 2SLS estimates if

the F-statistic of the first stage is below 20. They also demonstrate that in cases in which

10In this paper, we use the narrow definition of IVs, i.e., we only consider the variables that are used to
explain the endogenous regressor but that are not used to explain the outcome variable as IVs, while
the broad definition of IVs additionally includes the variables that are used to explain the outcome
variable because these variables are also used to explain the endogenous regressor.

11This makes 2SLS more susceptible to p-hacking and publication bias (Lal et al., 2024).
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there is only one instrument, the evaluation of instrument strength should be based on an

F-statistic that exceeds 50. Moreover, estimation results (e.g., t-tests) are often unreliable

even in cases in which there are much higher values for the F-statistic (e.g., Lee et al.,

2022; Keane and Neal, 2023, 2024). Moreover, Lal et al. (2024) show that first-stage F-

statistics are frequently overestimated if the test is not robust towards heteroskedasticity,

clustering and autocorrelation, which implies that IVs in such cases may incorrectly be

treated as relevant (not weak).

Exclusion restrictions imply that the exogenous (excluded) instrument influences the

dependent variable only via its effect on the endogenous explanatory variable and it is

not correlated with the error term. Traditionally, the exogeneity of the instrumental

variables cannot be empirically investigated unless more potential instrumental variables

than endogenous regressors are available, and it is certain that there are at least as many

exogenous instrumental variables as there are endogenous regressors. However, although

the exclusion restrictions cannot be tested empirically, motivating their validity based

on sound theoretical argumentation is of utmost importance (e.g., Lal et al., 2024). It

is moreover helpful to think of placebo estimates that can be used to rule out specific

violations of the exclusion restriction. For instance, the instrumental variable might af-

fect the treatment via a specific mechanism that only matters for some observations (e.g.,

specific locations, farmers, or crops) but not for others. In this case, a useful placebo

test would be to obtain reduced-form estimates of the correlation between the outcome

and the instrumental variable for a (sub)sample of observations, where the outcome and

the instrumental variable should be uncorrelated. If the endogenous regressor is a binary

(treatment) variable, the falsification test suggested by Di Falco et al. (2011), in which

the regression model is re-estimated with untreated observations only and with the en-

dogenous regressor replaced by the instrumental variable, can be applied. Acemoglu et al.

(2001) suggest estimating the outcome equation with both the endogenous regressor and

the instrumental variable (and of course all relevant control variables). If the instrumen-

tal variable affects the dependent variable through the endogenous regressor only, the

coefficient of the instrumental variable in this auxiliary regression should be close to zero.

However, if the instrumental variable is highly relevant, it is highly correlated with the

endogenous regressor, so that the coefficient of the instrumental variable is very impre-

cisely estimated in this auxiliary regression, and a statistical test on this coefficient has

very little statistical power. If the main concern is that the instrumental variable might

affect the outcome through a specific pathway other than the endogenous regressor, and

this potential other pathway is measurable, one can directly test this potential violation

of the exclusion restriction by regressing this pathway on the instrumental variable. For

example, if an instrumental variable is supposed to affect the farmers’ access to credit but

is assumed not to affect their access to insurance, one can regress farmers’ access to insur-

ance on the instrumental variable. One weakness of all these placebo tests is that they can

never ‘prove’ that an IV is exogenous because a ‘successful’ placebo test, i.e., a statistically

9



insignificant result may have many explanations, e.g., insufficient statistical power caused

by a small number of observations, multicollinearity, or a large error variance. Hence, it

is always necessary to critically discuss the assumption of statistical exogeneity for each

instrumental variable used, e.g., by exploring potential (unobserved) variables that may

be related to both the treatment variable and the outcome variable. This is very impor-

tant as, for example, McKenzie et al. (2010) show that using instruments for which the

exclusion restriction is potentially violated may lead to the overestimation of the effect

of up to 82% compared to the effect found from an experimental benchmark study. This

is more than the overestimation that occurs when simply applying OLS (35%), matching

(20%) or DID (22%), which implies that a badly identified 2SLS estimation only makes

things worse. As a general rule, the less specific the chosen instrumental variable, the less

likely the exclusion restriction is valid (see, e.g., Mellon (2024) for a discussion of rainfall

as an instrument).

In the case of a weak instrument or a violation of the exclusion restrictions, an IV

estimation can lead to greater bias than an OLS regression (Lal et al., 2024). In such

cases, it is advisable to apply non-causal estimators, interpret the results as associations,

and draw conclusions with due caution. Here we refer, e.g., to Groher et al. (2020) and

Aı̈hounton and Henningsen (2024) for examples of correlational wording. Lal et al. (2024)

note that 2SLS estimates are in many cases much larger than standard OLS estimates

although the aim of the IV estimation is usually to tackle a positive omitted variable bias

of OLS. It is, therefore, advisable to also discuss the direction of the bias that the IV

estimation is intended to address and assess the extent to which the IV approach was

able to address this bias (for examples, see, e.g., Basu, 2018; Hirsch et al., 2023).

For estimating 2SLS, modern statistical software offers various packages. It is advisable

to use these rather than manually estimating 2SLS by first estimating the first-stage OLS

and then manually inserting the predicted values into a separately estimated second-

stage OLS regression. A common mistake when using the ‘manual’ procedure is failing

to include the same control variables in both stages, which results in inconsistent 2SLS

estimates (Angrist and Pischke, 2009). Furthermore, the ‘manual’ procedure results in

incorrect OLS standard errors in the second stage. However, unless the instruments are

very strong, even the standard errors obtained by software packages for 2SLS estimations

do not correctly reflect the uncertainty of 2SLS estimates and, thus, they need to be

further adjusted (Lee et al., 2022; Lal et al., 2024).

It is important to note that 2SLS estimates indicate average treatment effects (ATE)

only under restrictive assumptions (e.g., that the treatment effect is homogeneous across

all subjects with the same values of the control variables) (e.g., Heckman, 1997; Aronow

and Carnegie, 2013).12 However, these assumptions are unlikely to be fulfilled in many

12Aronow and Carnegie (2013) suggest a method that requires either homogeneity of the treatment effect
or homogeneity of compliance (i.e., that instruments have the same effect on the treatment assignment
across all observations).
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empirical analyses. Under less restrictive assumptions (e.g., monotonicity of the effect of

the instrumental variable on the endogenous explanatory variable), 2SLS estimates indi-

cate local average treatment effects (LATE), which indicates the effect of the part of the

variation in the endogenous explanatory variable that is caused by variation in the instru-

mental variable (e.g., Imbens and Angrist, 1994). For instance, in the case of a binary

instrumental variable and a binary endogenous explanatory variable, the LATE indicates

the average treatment effect on those subjects that ‘comply’ with the instrumental vari-

able, while the effects on the ‘always takers’ and the ‘never takers’ remain unidentified.

While the LATE may provide relevant information in some empirical analyses, in others

it might not identify the effect we are interested in (Angrist and Pischke, 2009; Aronow

and Carnegie, 2013).

3.1 Extended IV Methods

While the discussions above refer to IV and 2SLS regression, they are largely transferable

to extended IV methods such as Wooldridge’s 3-step IV method for binary endogenous

regressors (Wooldridge, 2010, p. 937–942), 3-stage least squares (3SLS), and more recent

estimators that are particularly suited to handling binary and ordinal endogenous vari-

ables such as the extended regression IV approaches in Stata, which estimate the param-

eters using maximum likelihood (see Jafari et al. (2023) for an example and Stata Press

(2023), p. 183 for a technical description). These discussions are also largely transferable

to estimators that are based on distributional assumptions of error terms as suggested

by Heckman (1976) such as the endogenous treatment effect model and the endogenous

switching regression model. These models can be estimated with a two-stage approach

that uses an inverse Mills ratio as additional regressor in the second-stage regression or

with a one-step maximum likelihood estimation. In fact, these models can be estimated

without instrumental variables (or exclusion restrictions) but in this case, the identifi-

cation of the estimated parameters hinges solely on the distributional assumptions, e.g.,

a bivariate normal distribution of the two error terms. As it is very unlikely that the

distributional assumptions will be fulfilled exactly in a real-world application, using these

estimators without instrumental variables would very likely result in unreliable estimates.

As strong instrumental variables render the distributional assumptions less relevant, it is

imperative to use strong instrumental variables when using these estimators. Thus, at

least one variable that strongly affects the selection outcome (i.e., whether an observation

is treated in an endogenous treatment effect model or whether an observation is in the

first or second outcome regime of an endogenous switching regression model) but does

not affect the dependent variable of the outcome equation and is not related to the error

term(s) of the outcome equation(s) is needed (see, e.g., Auci et al., 2021, for an example).

These variables are frequently called instrumental variables because they basically need

to fulfil the same criteria as instrumental variables in the regression methods discussed
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in the beginning of this section. Hence, the validity of the exclusion restrictions must

be investigated and critically discussed in similar ways to the validity of instrumental

variables in the regression methods discussed in the beginning of this section.

A straight-foward extension of a 2SLS estimation to non-linear regression models would

be to regress each endogenous explanatory variable on the exogenous explanatory variables

and the instrumental variables (using linear or non-linear regression) and to obtain the

predicted values of the endogenous explanatory variables. One can then estimate the

non-linear regression model with the endogenous explanatory variables replaced by the

predicted values obtained in the first stage. However, caution is advised here to avoid

falling into what Angrist and Pischke (2009) refer to as the “forbidden regression” trap and

directly applying the 2SLS argument to a non-linear case, for example, using the predicted

values from a probit first-stage in the second stage. Another mistake that must be avoided

in this context is, when dealing with both a linear and quadratic form of the endogenous

variable, simply using the square of the predicted values from the first-stage instead

of estimating two separate first-stage regressions (Angrist and Pischke, 2009). In the

case of non-linear least-squares regression, the non-linear two-stage least squares (N2SLS)

estimator has similar properties to the 2SLS estimator (Amemiya, 1974). However, in

many other non-linear regression models (e.g., logit, probit, count-data models), this

approach, which is sometimes called two-stage predictor substitution (2SPS), results in

inconsistent estimates (e.g., Terza et al., 2008). An alternative to this approach is a

slightly different procedure: The first stage is identical to the first-stage regression of 2SLS,

N2SLS and 2SPS estimators, but in the second stage, the residuals that were obtained

in the first stage are added as additional regressors (while the endogenous explanatory

variables are used as regressors). This approach is called Two-Stage Residual Inclusion

(2SRI) in biostatistics and health economics (e.g., Terza et al., 2008), while it is called the

control-function (CF) approach in the econometrics literature (e.g., Wooldridge, 2015).

In the case of linear regression models, this approach provides the same estimates as

a 2SLS estimation, while the consistency of this approach has been demonstrated for

many non-linear estimators. Hence, it is frequently used to address the endogeneity of

regressors in non-linear regression models such as double hurdle models (e.g., Rao and

Qaim, 2013; Sellare et al., 2020a) or fractional logit models (e.g., Wuepper, 2020). As

the identifying assumptions for the control function approach are similar to those of IV

and 2SLS estimations, the identification strategy should be based on the same evaluation

criteria as for other estimations with IVs.

A further regression framework that can be used in an instrumental-variable setting is

the Generalised Method of Moments (GMM), which identifies the regression coefficients

by assuming moment conditions in the population and then imposing these moment con-

ditions in the sample. The number of assumed moment conditions must be equal to or

larger than the number of regression coefficients to be estimated. Given that a myriad

of different moment conditions can be assumed, the GMM framework is very flexible and
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many well-known estimators such as OLS regression and 2SLS regression are special cases.

If a GMM approach is used to estimate causal effects, the appropriateness of the assumed

moment conditions must be thoroughly and critically discussed. If a GMM estimation

uses instrumental variables, the validity of these IVs should be discussed as described

above for other methods that use IVs. If we have more moment conditions available than

we have regression coefficients, a Sargan-Hansen test (also known as Sargan’s J test or

Hansen’s J test) can be used to empirically assess the validity of the moment conditions.

In the case of panel data, the GMM framework can address the endogeneity of explanatory

variables even without external instruments by using the lagged values of some variables

as ‘internal’ instruments. The “Difference GMM” estimator suggested by Arellano and

Bond (1991) and the “System GMM” estimator suggested by Arellano and Bover (1995)

and Blundell and Bond (1998) are frequently used GMM estimators that use internal in-

struments. The moment conditions assumed by these types of estimators can be complex.

Similar to using lagged values of endogenous regressors as IVs in 2SLS estimations (see

Section 3.2 below and Wang and Bellemare, 2020), these types of estimators usually re-

quire restrictive assumptions about unobserved factors, which may be unrealistic in most

empirical applications.

The availability of a valid instrument is a crucial requirement for obtaining unbiased

treatment estimates using any IV approach. However, it is also crucial to consider the

functional form assumption that underlies the employed methods. For instance, Okui

et al. (2012) show that 2SLS regression may result in substantially biased estimates of

the treatment effect if the functional relationship between the control variables and the

outcome variable is incorrectly specified. Interestingly, in applied settings, much of the

discussion seems to focus on the validity of the instrument, while often the strong func-

tional form assumptions seem to be more readily accepted and less critically discussed.

However, depending on the degree of heterogeneity or nonlinearity, they may be equally

critical (Okui et al., 2012).

Existing nonparametric versions of IV estimators relax these functional form assump-

tions and require only that outcomes are the sum of an (unknown) nonlinear function

of treatment and observed covariates (that are uncorrelated to unobservables) and an

additive error term which may be correlated to unobservables (Newey and Powell, 2003).

However, early nonparametric approaches based on basis functions/splines or kernel meth-

ods struggle with a larger number of covariates or instruments and large sample sizes.

Building on these early nonparametric estimators, an active field of research at the inter-

section of machine learning and econometrics has developed extensions that leverage the

predictive capabilities of modern machine learning methods to improve nonparametric IV

estimators.

Chernozhukov et al. (2018) show that Double Machine Learning (see Section 2) can also

be applied to an IV setting, which means the linearity assumption of 2SLS regression can

be relaxed. Their approach allows both the outcome equation and the treatment equa-
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tion to be unknown nonlinear equations that can be approximated by any flexible machine

learning algorithm. However, it still requires assuming either homogeneity of treatment

or homogeneity of treatment assignment. Under these conditions, the approach provides

a consistent estimate of an average treatment effect (ATE). Going further, multiple ap-

proaches also relax the homogeneity assumptions and allow the estimation of treatment

effects that vary depending on the observed characteristics. Hartford et al. (2017) have de-

veloped an approach called DeepIV, which uses deep neural networks in both the outcome

and treatment model. Athey et al. (2019) have developed Generalised Random Forests

(RFs) as a nonparametric estimator that can be used to estimate any quantity identified

by a set of (local) moment conditions. They demonstrate that this approach can be used

to estimate treatment effects under the unconfoundedness assumption (leading to an ap-

proach called Causal Forests, see Section 2) but also in an IV setting. Generalised RFs

can basically be understood as a more flexible alternative to GMM estimation methods.

Importantly, Generalised RFs are able to learn treatment heterogeneity in a data-driven

manner. Additionally, it is possible to obtain asymptotic uncertainty intervals for the

estimated treatment effect, allowing the user to assess uncertainty in the estimates and

perform hypothesis testing. While DeepIV and Generalised RFs are specifically designed

around deep neural networks and RFs, respectively, Syrgkanis et al. (2019) provide a

generalised framework (Orthogonal IV) for nonparametric IV estimations that allows the

use of any machine learning approach in the outcome and treatment model. They also

develop methods that allow the projection of treatment heterogeneity to a simpler (poten-

tially linear) lower dimensional space. This means asymptotic confidence intervals can be

derived and machine learning interpretability methods (e.g., SHAP values) can be used

to illustrate and inspect treatment heterogeneity.

Generally, the promise of IV estimation is that it can estimate unbiased effects despite

unobserved confounders. However, any IV approach comes at the cost of a substantial

reduction in the statistical power of the estimation. This is particularly relevant to con-

sider when estimating heterogeneous treatment effects (given that estimating not just one

value but infinitely many or a function of values is a substantially more complex task).

Hence, applying IV methods with the aim of identifying treatment heterogeneity typically

requires large datasets.13

Another relatively specialised case of machine learning in the context of IV estimation

is to deal with a situation in which there is a large number of potential instruments

(potentially larger than the number of observations). Belloni et al. (2012) demonstrate

that simple machine learning methods such as LASSO can be used to select instruments

under the assumption that the treatment assignment can be sufficiently predicted by a

13Most of the machine-learning approaches that are relevant for applied economists (Double Machine
Learning, DeepIV, Causal Forest, Generalised RFs for IV, Orthogonal IV) are available in the Python
package EconML (https://econml.azurewebsites.net/index.html), which provides a unified API
for all these approaches and represents a relatively simple application for applied researchers.
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small subset of all the available instruments. However, in empirical settings, we very

rarely face the (luxury) problem of having too many IVs.

3.2 Special types of Instruments

A special type of instrumental variable which is popular among applied economists is

the so-called spatial instrumental variable or leave-one-out instrumental variable (e.g.,

Mason et al., 2013; Krishnan and Patnam, 2014; Smale and Mason, 2014; Magnan et al.,

2015; Wuepper et al., 2018; Sellare et al., 2020b; Tabe-Ojong et al., 2022; Aı̈hounton

and Henningsen, 2024). In this case, an endogenous explanatory (treatment) variable is

instrumented by the average or proportion within a peer group leaving out the respective

observation. For example, a farmer’s adoption of a technology is instrumented by the

proportion of farmers in the village who adopted this technology leaving out the respective

farmer. However, while this type of instrumental variable is usually highly relevant, its

exogeneity requires strict assumptions that are not fulfilled in many empirical applications

(Angrist, 2014; Betz et al., 2018; McKenzie, 2018). In some empirical analyses, it may

be reasonable to use such a spatial instrumental variable or a variant thereof, potentially

combined with other tools, but authors must provide clear reasoning as to why this

identification strategy is valid in their study (e.g., Maggio et al., 2022).

Closely related to spatial instruments are Hausman-type instruments, which are fre-

quently used in food product demand analyses to account for the endogeneity of product

prices (see, e.g., Nevo, 2001). The idea is that the price of a product in other regions can

be used as instrument since the same product has similar marginal costs across regions

but different demand shifters (Hausman, 1996; Nevo, 2000; Hirsch et al., 2018). However,

this assumption may be violated in the case of a nationwide shock in demand, for exam-

ple, if a nationwide advertising campaign that influences the demand of a product across

regional borders is launched (Nevo, 2000, 2001).

Similar to using lagged values of explanatory variables to address endogeneity in an

identification-on-observables identification strategy (see Section 2), lagged values can also

be used as instrumental variables; an identification strategy that is popular among applied

economists. However, Wang and Bellemare (2020) show that IVs of this type require spe-

cific assumptions. For instance, even if the exclusion restriction is fulfilled, the estimates

are biased (although consistent), and the likelihood of making Type-1 errors is high if

there is first-order autocorrelation in unobserved factors because this leads to a corre-

lation between the lagged IV and the error term (Wang and Bellemare, 2020). As this

cannot be ruled out in most empirical applications, Wang and Bellemare (2020) conclude

that using lagged values of endogenous explanatory variables as instrumental variables

“is unlikely to lead to credible estimates.”

Shift-share instruments, also known as Bartik-type instruments (Bartik, 1991; Borusyak

et al., 2025), can be used in cases in which one wants to account for endogeneity of regional
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variables, e.g., when analysing the effect of a regional subsidy on farm performance. In

this case, a shift-share instrument is based on the idea that nationwide values of subsidies

“shift” the regional (endogenous) subsidies according to a predetermined out-of-sample

economic state of the region (share) (see, e.g., Zou et al., 2024, for an example). More

precisely, in this case, the Bartik IV is the product of a variable that captures the national

subsidy level and a variable with information on the state of the regional economy, e.g.,

one year before the start of the sample that is used in the analysis. This remaining part

of the variance in the regional subsidies is uncorrelated with the regional-level error term,

which means it may serve as an IV (Bartik, 1991; Breuer, 2022; Zou et al., 2024). It is

important to note that for shift-share instruments, valid identification can be achieved

when either the shift component or the share component of the IV is exogenous. For

additional guidance, we refer to Borusyak et al. (2025).

3.3 Practical checks for IV approaches

When using IV-based methods, we suggest performing the following checks that comprise

a combination of theory-based considerations and suitable statistical tests (e.g., Lal et al.,

2024) (in addition to following the general suggestions that we provide in Section 6).

If various assessments indicate that an IV regression method may be suitable, it is

important to assess whether it is indeed necessary to apply an IV-based method in the

empirical analysis:

• If an explanatory variable is incorrectly treated as endogenous, estimates based on

IV regression (e.g., 2SLS) are less efficient than estimates based on correspond-

ing selection-on-observables regression methods (e.g., OLS). Therefore, it is impor-

tant to consider and discuss whether a potentially endogenous explanatory variable

should indeed be instrumented. This discussion can partly be based on statistical

tests such as the Durbin-Wu-Hausman test (sometimes called “Wu-Hausman test”

or just “Hausman test”), the Davidson-MacKinnon test, or an analogous test for

an extended IV method. If these tests reject the null hypothesis of exogeneity, we

can conclude that it is necessary to use IV regression. However, if these tests do

not reject the null hypothesis of exogeneity, we cannot conclude that a selection-on-

observables identification strategy is suitable. In such cases, one could discuss the

suitability of a selection-on-observables identification strategy and, depending on

the conclusion of this discussion, decide whether to apply a potentially inefficient

IV regression method or a potentially inconsistent method based on a selection-

on-observables identification strategy. In all cases, it is advisable to provide and

compare the results for both estimation strategies.

If one concludes that it is necessary to use an IV regression method, it is important to

assess the strength of the instruments based on the following criteria:
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• Always report full first-stage results including all model diagnostics.

• Only use IV-based methods when there is a sufficiently high correlation between the

endogenous explanatory variable and the IV after controlling for exogenous control

variables (i.e., in the first stage of an IV estimation).

• If the F-statistic of the first stage is below 20, consider presenting OLS estimates

instead of 2SLS estimates as OLS estimates are often closer to the ‘true’ causal

effects than are 2SLS estimates. In the case of a single instrument, the F-statistic

should exceed 50 (Keane and Neal, 2024).

• If the first-stage F-statistic is below 100, standard errors may need to be adjusted

as described by Lee et al. (2022) or Keane and Neal (2024).

• In the case of heteroskedasticity, clustering or autocorrelation in the first stage, it is

important to conduct an F-test that is robust to these conditions as a standard F-test

overestimates the F-statistic (Lal et al., 2024). See, for example, the Cragg-Donald

F statistic (Cragg and Donald, 1993) or the Kleibergen-Paap statistic (Kleibergen

and Paap, 2006) and the guidance on these statistics provided in, e.g., Bazzi and

Clemens (2013) or Windmeijer (2024).

We refer to previous parts of this section and the literature (e.g., Lal et al., 2024, sec-

tion 2.2.1) for a deeper discussion of the options for investigating instrument strength.

If the instruments are sufficiently strong (so that the use of IV regression is not aban-

doned), it is important to assess the appropriateness of the exclusion restriction / inde-

pendence assumption. We suggest doing the following:

• Use a Sargan-Hansen test / Sargan’s J test / Hansen’s J test to test for overidenti-

fying restrictions if the model is overidentified (i.e., the number of IVs is larger than

the number of endogenous explanatory variables) and it can be assumed that there

are at least as many exogenous instruments as there are endogenous regressors.

• Use strong theoretical considerations to rule out any direct effect on the dependent

variable or any relationship with omitted factors (error term), see, e.g., Mellon

(2024), who discusses the use of weather as an instrument.

• Use placebo tests to assess the exclusion restriction(s) but be aware of their limita-

tions.

For further discussion on how to assess the exclusion restriction, we refer to previous parts

of this section and the literature (e.g. Lal et al., 2024, section 2.2.2).

If the exclusion restriction / independence assumption is considered to be appropriate,

it is important to carefully assess and interpret the second-stage results and:

• Provide OLS estimates for comparison.
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• Discuss whether 2SLS managed to address the OLS bias, which involves a discussion

of the direction of the OLS bias and the extent to which 2SLS was able to attenuate

this bias (see, e.g., Basu, 2018).

• Interpret the results as LATE unless there is credible evidence that the chosen

method and empirical specification provide an estimate of the ATE.

• Use the tF test (Lee et al., 2022) or the Anderson-Rubin (AR) test (Keane and

Neal, 2024) instead of standard t-tests.

4 Fixed Effects and Difference in Differences

Fixed effects are a useful tool to control for unobserved confounders that are constant

at the fixed-effect level. In other words, when using individual-fixed effects in a study

with panel data, which in agricultural economics papers are often farm-fixed effects, one

can control for all time-invariant unobserved heterogeneity at the individual (farm) level.

For instance, the unobserved heterogeneity may be differences in management skills, local

climatic and soil conditions, infrastructure, or the remoteness of the area. Consequently,

models with individual-fixed effects can not quantify the effects of time invariant factors

such as proximity to a city (Wooldridge, 2010). Similarly, fixed effects can be set and

combined at every level that reasonably groups the data. For instance, year-fixed effects

control for all unobserved heterogeneity that affects all units in a given year in the same

way, such as market conditions, the introduction of a certain policy, etc. Mathematically,

fixed effects are equal to a joint demeaning of the dependent variable and the independent

variables, which is also called within transformation. For farm-fixed effects, this implies

subtracting the farm average from each observation. This transforms, for instance, ab-

solute profits into deviations from average profits in the observed time period per farm

(Cunningham, 2021). Therefore, fixed effects may be helpful for controlling for many un-

observed factors, and they may also be combined with other methods such as IV or DID.

However, there are only a few examples of cases in which fixed effects are sufficient to

fully establish causality in a model (Blanc and Schlenker, 2017). One example is weather

shock impact models that regress a measure of agricultural performance such as yields

or productivity on a random and exogenous weather shock (Blanc and Schlenker, 2017).

Remaining caveats of fixed-effect models are connected with reverse causality and time-

variant confounders, which may still introduce simultaneity and omitted-variable biases

(Cunningham, 2021).

While fixed effects help to control for biases arising from unobserved confounders, a

common issue in fixed-effect applications is the temporal and spatial correlation in often

heteroscedastic errors. The standard approaches to dealing with this are adjusting stan-

dard errors so that they are robust against heteroscedasticity and allowing for temporal

and spatial autocorrelation through clustering (Cameron et al., 2011). Another issue that
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may arise as a result of using fixed effects to control for time-invariant heterogeneity can be

seen from the above examples on time-invariant factors. In fact, climatic conditions, soil

quality, and infrastructure may be reasonably considered time-invariant in the short-run

but they may change over longer time horizons. Therefore, Millimet and Bellemare (2023)

follow Mundlak (1961, 1978) and argue that such potential bias may be ignored in shorter

panels due to negligible changes in these variables over time. However, in increasingly

long panels, a trade-off arises between efficiency gains derived from more observations

and potential biases and inconsistency resulting from not truly time-invariant factors ac-

cumulating to considerable unobserved confounders over time. Millimet and Bellemare

(2023) highlight alternative estimators such as the first-difference or twice first-differenced

estimator and suggest a rolling first-differenced estimator (and others), which can either

be used as alternatives to fixed effect estimators or at least to show sensitivity of the

estimates to these different estimators and their underlying assumptions.

An alternative approach to estimating causal effects with panel data is the difference-

in-differences (DID) method. In classic DID estimations, there are two groups and two

time periods. There is a pre-treatment period, when no units are treated; and there is a

post-treatment period, when some units are treated (the treated group) and others (the

control group) remain untreated. By using the control group as the counterfactual in

the post-treatment period, it is possible to calculate the average difference between the

observed effects of a treatment and the counterfactual: the “average treatment effects on

the treated” (ATT).

The underlying identifying assumption in DID is the parallel-trends assumption, which

reasons that the treated units would have followed the same parallel trends as the un-

treated control units had the treated units gone from the pre-treatment period to the

post-treatment period in the absence of treatment.14 If this assumption is satisfied, then

the control units can provide the counterfactual for the treated group in the post-treatment

period. However, the parallel-trends assumption is purely hypothetical by definition since

it is impossible to be certain that the trends of the treated units and the untreated control

units would have followed parallel paths in the post-treatment period. When using a data

set that includes multiple pre-treatment periods, one can verify that the pre-treatment

trends of the two groups are parallel, though one should be cautious when inferring “true

causality” as parallel trends in the pre-treatment periods may not necessarily imply par-

14In certain cases, a simple double-difference (DID) design may not yield reliable causal inference. For
instance, if a policy targets farmers younger than 40 years in a specific state, comparing this group of
farmers to either farmers aged 40–49 years in the same state or to farmers younger than 40 years in
other states may lead to biased estimates because it does not account for age-related or state-specific
trends, respectively. To address this, a triple-DID estimator uses differences in three dimensions (state,
age group, and time) to isolate the causal effect of the policy change. The triple DID estimator, which
can also be calculated as the difference between two DID estimators, may only require one parallel
trend assumption as long as the bias is the same in both estimators, in which case the bias cancels
out when differenced (Olden and Møen, 2022).
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allel trends between the last pre-treatment period and the post-treatment period in the

hypothetical situation in which the treatment group is not treated.

Multiple applications of DID in agricultural and food economics settings exist. For

instance, on consumption, Fan et al. (2022) estimate the impact of the introduction of a

sugar tax on candy purchases and Hoy and Wrenn (2020) estimate the impact of GMO

labelling on consumer choices. On production, Belay and Jensen (2020) estimate the effect

of information disclosure on antibiotic use and market survival among pig farms, while

Belay and Jensen (2022) evaluate the impact of limiting antibiotic use on the economic

performance of farms.

The basic DID set-up can be extended to situations in which different units of the

treatment group receive the treatment at different times, which is known as heterogeneous

treatment timing. Under conditions in which the size of the treatment effect is (a) constant

over time and (b) independent of the time period of the treatment, a standard two-way

fixed effects estimator offers a reliable estimation for inferring treatment effect causality

(Huntington-Klein, 2021).

However, under heterogeneous treatment timing and treatment effect heterogeneity, the

estimated average treatment effect of the two-way fixed effect estimator on the treated

may be biased and causally interpreting the regression coefficient becomes problematic

even if the parallel-trends assumption holds (Goodman-Bacon, 2021; Athey and Imbens,

2022). For instance, this may be the staggered adoption of an agricultural policy whose

effect is time-varying, i.e., the magnitude of the effect depends on the time when a farm

faced the treatment (e.g., policy) for the first time, the number of years that the farm

has already faced the treatment (e.g., due to adjustments, learning, and/or accumulating

effects over time), and/or the specific year (e.g., on the weather or market conditions in

the year). By making so-called “forbidden comparisons” between groups that received the

treatment at earlier and later times, the estimated average treatment effect on the treated

may be negative even when the effect is, in fact, positive, which is known as the negative

weights problem (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2023b;

Borusyak et al., 2024). Recent developments in DID have identified solutions to this

issue. Studies by Callaway and Sant’Anna (2021), Sun and Abraham (2021), Wooldridge

(2021), de Chaisemartin and D’Haultfœuille (2023a), and Borusyak et al. (2024) have

overcome the negative weights problem by restricting the types of comparisons that can

be made and ensuring that appropriate counterfactuals are used to causally infer effects

under heterogeneous treatment timing and treatment effect heterogeneity under various

conditions of the parallel-trends assumption.

One may condition the parallel-trends assumption on additional covariates, such as

weather or growing conditions, or on anticipatory behaviour such as in the event of an

upcoming policy change (Callaway and Sant’Anna, 2021). Depending on the research

design, one may select either the never-treated group or the not-yet-treated group as con-

trols, for example, if there is a gradual policy rollout (Callaway and Sant’Anna, 2021;
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de Chaisemartin and D’Haultfœuille, 2023a). A researcher can opt for efficient linear es-

timation (Borusyak et al., 2024), two-stage difference in differences (Gardner et al., 2024)

or non-linear DID models such as exponential, logit, or probit models (Wooldridge, 2021).

Moreover, heterogeneity-robust DiD designs exist for staggered (i.e., irreversible), contin-

uous (i.e., non-binary and non-discrete), and multiple (i.e., reversible and re-treatable)

treatments (de Chaisemartin and D’Haultfœuille, 2023a; Callaway et al., 2024). In the

case of multiple treatments (sometimes also called treatment-on-and-off scenario), it is

important to distinguish between “no carryover” and “(arbitrary) carryover.” In the

“no-carryover” case, only the current treatment status affects outcomes with no lasting

impact from past treatment (de Chaisemartin and D’Haultfœuille, 2023a). In contrast,

“(arbitrary) carryover” means that the treatment history influences outcomes, making

it resemble the staggered treatment scenario. In this case, “intent-to-treat” effects can

be estimated by defining treatment as “has ever been treated” in a staggered treatment

fashion, thereby ensuring that the treatment status is absorbing and accounts for any

potential carryover effects (Liu et al., 2024; Sun and Abraham, 2021). In many cases, the

effect of having previously received the treatment is of interest as it reflects the long-term

impact of the treatment, even if the treatment itself is temporary. For instance, Deryug-

ina (2017) studies the fiscal cost for counties hit by hurricanes. While hurricanes are

transitory, their long-term impact persists, so (Deryugina, 2017) models the year of the

first hurricane to capture these effects. By replacing the hurricane status (on/off) with

an indicator for being previously hit by a hurricane, the treatment becomes absorbing,

thereby enabling the use of staggered adoption designs (Sun and Abraham, 2021).

If the unconditional parallel trends assumption holds (without covariates), Table 1

provides an overview of the recommended estimation methods and their implementation

in Stata and R for various DID model scenarios. From all methods listed in Table 1, the

method suggested by Callaway and Sant’Anna (2021) is the most suitable for cases where

the parallel trends assumption holds only after conditioning on covariates; this method is

applicable for treatments that are both binary and staggered.

Moreover, recently suggested DID estimators offer useful event-study-type plots which

visualise aggregated effects from single group-time specific treatment effects, which can be

used to evaluate both (dynamic) treatment effects and test pre-treatment parallel trends

(e.g., Taylor, 2022; Li and Zhu, 2024). It is important to note that these conventional

(event study15) pre-trend tests for parallel trends often lack power and therefore fail

to detect biases from pre-existing trends (Roth, 2022). Researchers should assess the

statistical power of these tests using tools such as the “pretrends” R package for nonlinear

trends and consider alternatives such as visualisation tools (Freyaldenhoven et al., 2021) or

magnitude-based pre-trend evaluation (Bilinski and Hatfield, 2020). To avoid pretesting

biases, Freyaldenhoven et al. (2019) recommend adjusting for counterfactual trends with

15An event study is commonly used to examine the dynamic effects of a treatment and to test the
parallel-trends assumption before the treatment.
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unaffected covariates, while Rambachan and Roth (2023) offer confidence sets that address

pre-trend uncertainty, which can be done using the “HonestDiD” package in R or Stata.

Regardless of the approach, using economic knowledge to analyse potential parallel trend

violations strengthens causal inferences over relying solely on the statistical significance

of pre-trends tests (Roth, 2022).

An interesting extension to study staggered treatment problems is the matrix comple-

tion approach for causal panel data models, which allows the combination of two-way

fixed-effects with synthetic controls in a data-driven manner (Athey et al., 2021). In an

agricultural context, this approach is particularly appealing as it naturally deals with

unbalanced panel data sets (Martinsson et al., 2024).

When using fixed-effect-based or DID-based methods, we suggest doing the following

(in addition to following the general suggestions that we provide in Section 6):

• Provide reasoning based on economic theory on unobserved confounders that po-

tentially bias estimates and that can be addressed by the use of fixed effects.

• Provide reasoning on the time invariance of potential unobserved confounders with

respect to the covered time horizon when using individual-fixed effects.

• Adjust standard errors to allow for spatial and/or temporal autocorrelation.

• Evaluate the validity of the parallel trends assumption by creating event-study plots

in DID settings.

• Empirically investigate the extent to which pre-treatment trends are parallel in DID

settings. This investigation should include supplementing event-study plots with

diagnostic tests that assess the statistical power of tests for pre-treatment parallel

trends.

• Consider using methods such as those suggested by Abadie (2005), Sant’Anna and

Zhao (2020), and Callaway and Sant’Anna (2021) in DID settings, in which the

parallel-trends assumption only holds when conditioning on covariates.

• Provide reasoning based on economic theory on post-treatment parallel trends in

DID settings.

• Choose a suitable DID method and substantiate the choice of method by providing

convincing arguments (see, e.g., Table 1).
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Table 1: Difference-in-Differences Methods
Number
of time
peri-
ods

Treat-
ment
scenario

Dy-
na-
mic
TE

Specific
scenario

Recom-
mended
estima-
tion
method

Implementation
in Stata module
or package

Implementation
in R package

Two Single
treatment
group

Ir-
rele-
vant

(Static)
TWFE,
AA, SZ

reghdfe, xtreg,
absdid, drdid

plm, DRDID

Multiple
(event
study)

No Average of the
event-study
coefficients
(“Overall” ATT)

(Static)
TWFE,
AA, SZ

reghdfe, xtreg,
absdid, drdid

plm, DRDID

Yes Baseline: average
of all
pre-treatment
periods

BJS, W21,
GT

did imputation,
did2s,
xthdidregress,
jwdid, wooldid

didimputation,
did2s, etwfe

Baseline: last
pre-treatment
period

(Dynamic)
TWFE,
CS, DH,
SA

reghdfe, eventdd,
xtevent,
eventstudyinteract,
csdid,
did multiplegt dyn

plm, fixest, did,
DIDmultiplegtDYN

Staggered Yes Baseline: last
pre-treatment
period

CS, DH,
SA

eventstudyinteract,
csdid,
did multiplegt dyn

fixest, did,
DIDmultiplegtDYN

Baseline: average
of all
pre-treatment
periods

BJS, W21,
GT

did imputation,
did2s,
xthdidregress,
jwdid, wooldid

didimputation,
did2s, etwfe

Control group:
not-yet-treated

CS, DH,
BJS

csdid,
did multiplegt dyn,
did imputation

did,
DIDmultiplegtDYN,
didimputation

Control group:
last to be-treated
or never-treated

CS, SA csdid,
eventstudyinteract

did, fixest

Imputation
methods

BJS, W21,
GT

did imputation,
did2s,
xthdidregress,
jwdid, wooldid

didimputation,
did2s, etwfe

Fast estimation BJS did imputation didimputation
Non-linear
estimations

W23 jwdid, wooldid etwfe

Two-stage
differences in
differences

GT did2s did2s

(Quasi-)random
assignment of
treatment

RS, AI staggered staggered

Continu-
ous

Yes CGS, DH did multiplegt dyn DIDmultiplegtDYN

Multiple
(treat-
ment-on-
and-off)

No No carryover DH did multiplegt dyn DIDmultiplegtDYN
Yes (Arbitrary)

carryover
Methods in
staggered
treatment
scenario,
LWX

fect fect

Notes: AA: Abadie (2005) AI: Athey and Imbens (2022); BJS: Borusyak et al. (2024); CGS: Callaway et al.
(2024); CS: Callaway and Sant’Anna (2021); DH: de Chaisemartin and D’Haultfœuille (2023a); GT: Gardner et al.
(2024); LWX: Liu et al. (2024). RS: Roth and Sant’Anna (2023); SA: Sun and Abraham (2021); SZ: Sant’Anna
and Zhao (2020) TWFE: two-way fixed effects; W21: Wooldridge (2021); W23: Wooldridge (2023). All these
recommendations are explicitly made under the assumption that the unconditional parallel trends assumption is
fulfilled (without covariates). However, some of these methods are also suitable in DID settings, in which the
parallel-trends assumption only holds when conditioning on covariates.
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5 Regression Discontinuity and Difference-in-

Discontinuity Designs

Regression Discontinuity Designs (RDDs) and Difference-in-Discontinuity Designs

(DiDDs) can be set-up in multiple ways (as discussed below and in Wuepper and Finger,

2023, in more detail). All of them share a particular mechanism for identifying causal

effects: If treatment assignment is triggered by a clearly-defined threshold in a con-

tinuously distributed variable, then—given a few falsifiable assumptions—discontinuity

in the outcome right at this threshold quantifies the treatment effect (Cunningham,

2021; Huntington-Klein, 2021). Intuitively, this works especially well with arbitrarily

set thresholds because it minimises the risk that, besides the treatment assignment,

something else “jumps” exactly at the threshold. Another important condition is that

observations (usually people) cannot choose which side of the threshold they are on (e.g.,

if it is well known that a subsidy is available to farms below a certain size, farmers whose

farms are just above the threshold may be able to take measures that ensure that their

farms fall just below, which might make the treatment endogenous).

The fundamental requirement for Regression Discontinuity Designs (RDD) is the exis-

tence of a continuously distributed variable that has a threshold which triggers treatment

assignment.16 For instance, public extension services may only visit farms within an ar-

bitrarily defined maximum distance-to-branch (Pan et al., 2018), and governments might

target villages with an anti-poverty programme if they are above an arbitrarily defined

poverty threshold (Alix-Garcia et al., 2013). Also, geographical borders can be used such

as historical borders within a country (Noack et al., 2022), or national borders dividing

countries (Wuepper et al., 2020a,b). When national borders are used, the triggered treat-

ment is to which country a given area belongs. The most intuitive way of understanding

how a national border can be used to identify the effect of an area that belongs to one

country but not another is provided in Figure 1.

The following example uses data from Wuepper and Finger (2023). Their starting point

is to quantify for each of many years how much countries matter for local crop yields.

Here, we only focus on two countries: Vietnam and Cambodia. The border can be divided

into small segments (a) and crop yields can be quantified in high resolution from satellite

imagery (b). When computing local averages of crop yields at equal distances from the

border and plotting these as a function of border distance, a striking pattern emerges:

Whereas crop yield is distributed rather smoothly on either side of the border, there is

a stark jump right at the border, which cannot be explained by potential confounders

such as rainfall or sunshine because these do not jump at the border: It is the countries

16The threshold does not have to deterministically trigger the treatment as it does in the standard model.
If the threshold only changes the probability of treatment, one moves from the sharp RDD to the fuzzy
RDD, which involves estimating an instrumental variable regression such as 2SLS with the threshold
as the instrument.
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Figure 1: a) The border between Cambodia and Vietnam separates an otherwise compa-
rable agricultural area into two countries. Colours distinguish different border
segments. (b) Satellite data can be used to obtain a methodologically unified,
high-resolution crop yield measure. (c) An important step: Before the actual
RDD is estimated, the data should be plotted, so that it is possible to visually
inspect whether the discontinuity that is to be estimated is visible. It is usually
helpful to aggregate the data points in small bins and fit regression lines sepa-
rately on both sides of the threshold. The actual RDD estimates the size of the
discontinuity at the threshold.

as political constructs that make the fields in Vietnam more productive than those in

Cambodia (Wuepper and Finger, 2023). The most important assumption here is that no

potential confounding factors also show a discontinuity right at the border. For example, if

this border was located right on top of a natural barrier such as a major mountain range,

the sudden change in agricultural conditions could also explain a jump in crop yields.

This can be tested, e.g., by replacing the outcome variable, in this case crop yields, with

elevation, rainfall, temperature, or sunshine, which would reveal whether these are also

discontinuously distributed.

Similarly, Regression Discontinuity in Time (RDiT) tackles endogeneity by examining

a narrow time window around the implementation of a policy, where time is used as the

running variable and the treatment date acts as the threshold. This approach assumes

that unobserved factors remain similar within the window, which allows pre-treatment

observations to be used as a comparison for post-treatment. RDiT utilises flexible poly-

nomial time trends and has been recently used in studies involving sin taxes, sugar and fat

taxes, air quality, fisheries, and food safety (Hausman and Rapson, 2018; Bovay, 2025).

The growing availability of high-frequency data further enhances its utility for researchers

evaluating national agricultural and environmental policies and interventions.

An increasingly popular research design is the Difference-in-Discontinuity Design

(DiDD), which is a combination of RDD and Difference-in-Differences. It is set-up like

a standard DID Design with the only difference being that it focuses on the change in a

discontinuity from before to after treatment. This built-in extra step improves the chance

of a valid parallel trends assumption because the estimated discontinuity already helps

to avoid confounding factors as discussed above. In the best-case scenario, a researcher

finds a situation in which the threshold is newly created at some point in time (e.g.,

an existing state is split into two), which means that demonstrating that there was no
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discontinuity prior to treatment is straightforward, and afterwards the discontinuity

shows the causal treatment effect (Garg and Shenoy, 2021). Alternatively, in the study

by Wuepper and Finger (2023), the leveraged country borders do not change, but they

show that the discontinuities in crop yields are stable before treatment and change in

response to countries’ institutional changes.

For the above-discussed research designs, simple procedures can be followed, which

include performing various tests and analytics in a chronological order, which allows

readers to easily follow and judge the credibility of the analysis (Wuepper and Finger,

2023). This is aided by off-the-shelf software especially that provided by Calonico et al.

(2015) and Calonico et al. (2017).17 The two main assumptions of RDD are exogenous

thresholds and no endogenous sorting. The simplest way of examining the assumption of

no endogenous sorting is to look for bunching near the threshold (McCrary, 2008). The

simple logic is that if there is a striking dip in observations on one side of the threshold,

and these “missing” observations all bunch together on the other side of the threshold, it

is likely that it is the result of optimising behaviour (e.g., if a regulation that only applies

to farms above 5 hectares was introduced, farmers who initially had 5.2 hectares quickly

got rid of 0.3 hectares).

When using discontinuity-based methods, we suggest doing the following (in addition

to following the general suggestions that we provide in Section 6):

• Visually assess the discontinuity (or the change in discontinuity) and the data dis-

tributions around the discontinuity.

• Conduct placebo tests to probe the exogeneity of the threshold (see, e.g., Wuepper

and Finger, 2023).

• Use alternative algorithms to compute the optimal statistical bandwidth for robust-

ness checks.

• Test for endogenous sorting across the threshold (McCrary, 2008).

6 General Suggestions and Conclusions

We do not recommend one particular method over another as whichever method is suitable

is case-dependent. Therefore, our aim is to provide clear guidelines that should be followed

when applying these methods.

In addition to the method-specific guidelines provided in previous sections of this paper,

we suggest doing the following irrespective of the chosen method:

• Start from the theoretical understanding of the problem (e.g., based on a DAG)

to define an identification strategy and clearly discuss under what assumptions the

17All available at: https://rdpackages.github.io/rdrobust/
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quantity of interest is identified, any potential explanations for violating the as-

sumptions and their consequences for identification.

• Carefully consider the assumptions of various estimation approaches. Consider the

extent to which these assumptions fit the theoretically motivated identification strat-

egy.

• Clearly point out the added value of the chosen method compared to simpler ap-

proaches such as OLS. Unless a relevant added value can be clearly demonstrated,

a simpler method may be preferable.

• Discuss the plausibility of the “Stable Unit Treatment Value Assumption” (SUTVA)

in your specific empirical analysis. Under this assumption, the potential outcomes

of each observation only depend on the treatment of this observation and not on

the treatment of other observations. All methods discussed in previous sections

require this assumption unless spillovers between observations are explicitly and

appropriately accounted for in the empirical analysis.

• Simulate artificial data sets with known properties before using actual data to per-

form an empirical analysis. Known properties may include the functional form of

the analysed relationship, the magnitude of the treatment effect and its hetero-

geneity between observations, correlations between observed variables and between

observed and unobserved variables, potential endogeneity issues, validity of the ex-

clusion restriction and IV strength (in the case of an IV-based method), the degree

of serial correlation of observed and unobserved variables (in the case of panel data

and/or the use of lagged variables), deviations from independently and identically

distributed (iid) error terms (e.g., heteroscedasticity, clustering), and other assump-

tions. Use these data sets to test the estimation approach (as well as the code used

to implement it). Test under which conditions the estimation approach succeeds in

recovering the effects used to create the artificial data. Using artificial data to test

the code/inference is a integral part of the data-generating-process centric workflow

proposed in Storm et al. (2024).

• Use multiple approaches and critically discuss what can be learnt from the results

of different methods as, in most cases, there may not be a single best estimation

approach as each approach has its advantages/drawbacks.

Even if these guidelines are followed, when investigating causal effects with observa-

tional data, except in very rare cases, one cannot be 100% certain that all the required

assumptions are completely fulfilled. Therefore, as a precaution, one should refrain from

using causal language such as “the effect of A on B”, “the impact of A on B”, “A affects

B”, “A reduces B”, “A increases B”, “A leads to a change in B”, etc. Instead, one can

write “A is positively related to B”, “A is negatively related to B”, “A is associated with
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B”, “A is conditionally associated with B”, etc. It is important to use consistent language

throughout the entire paper. One minor exception to this rule would be to write that

a study “aims to estimate the effect of A on B”, to explain why the estimates may not

indicate causal effects, and to interpret all estimates as conditional associations (as done

in, e.g., Aı̈hounton and Henningsen, 2024).
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