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Trouble Comes in Threes: Core stability in
Minimum Cost Connection Networks∗

Jens Leth Hougaard† ‡ Mich Tvede§

Abstract

We consider a generalization of the Minimum Cost Spanning Tree (MCST) model
dubbed the Minimum Cost Connection Network (MCCN) model, where network users
have connection demands in the form of a pair of target nodes they want connected
directly, or indirectly. Given a network which satisfies all connection demands at min-
imum cost, the problem consists of allocating the total cost of the efficient network
among its users. As such, every MCCN problem induces a cooperative cost game
where the cost of each each coalition of users is given by the cost of an efficient net-
work satisfying the demand of the users in the coalition. Unlike in the MCST model we
show that the core of the induced cost game in the MCCN model can be empty (without
introducing Steiner nodes). We therefore consider sufficient conditions for non-empty
core. Theorem 1 shows that when the efficient network and the demand graph consist
of the same components, the induced cost game has non-empty core. Theorem 2 shows
that when the demand graph has at most two components the induced cost game has
non-empty core.
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1 Introduction

We consider the Minimum Cost Connection Network (MCCN) model in which agents have
have individual connection demands in the form of a pair of target nodes they want con-
nected and connections are cost to build. A minimum cost connection network is a graph
that provides all agents with their desired connectivity at minimum cost. Such an efficient
graph is either a tree or a forest. In the specific case where all users want connection to
the same node, considered as a source, the model coincides with the classic Minimum Cost
Spanning Tree (MCST) model known from combinatorial optimization (e.g., Korte and Vy-
gen, 2018). Given a cost minimizing network, we focus on fair division of its total cost
among the network users.

In the special case of the MCST-model, the seminal paper by Bird (1976) suggests to
solve the issue of cost allocation by mapping the MCST-problem to a cooperative game
where the cost of a given coalition of users S is given by the minimum cost of connecting
the members of S to the source. Bird (1976) shows that the core of the induced cooperative
cost game is non-empty. That is, we can always find a way to allocate the total cost of
the efficient network such that no coalition of users can gain by implementing their own
sub-network. In this sense core allocations ensure network stability and thereby sustain the
efficient network configuration.

However, examples in Meggido (1978) and Tamir (1991) reveal that core stability is
connected to the fact that the set of users is identified by the set of nodes in the MCST model.
Adding three public nodes, i.e. Steiner nodes, to a three-agent MCST problem is enough to
produce instances of cost games with empty core. So the presence of “undemanded” nodes
can be a source of instability in efficient network design.

Now, generalizing users’ demands to connectivity between two arbitrary target nodes,
as in the MCCN model, reveals another source of potential instability - that demands are
too disconnected. By a simple three-agent example we demonstrate that we can end up in
situations where the core of the induced cost game is empty without adding Steiner nodes. In
the example, users have completely disconnected demands: each user demands connection
between a different pair of target nodes.

Our first result (Theorem 1) shows that if users’ connection demands are disconnected,
then as long as the cost minimizing network is disconnected as well, in the sense that the
network and the demand graph consists of the same components, then the induced cost
game has non-empty core. Thus, network stability can still be ensured in situations where it
is relatively costly to connect multiple clusters of users with interlinked connectivity needs.

Our second result (Theorem 2) shows that non-empty core, and thereby network stability,
can also be ensured if users’ demands are sufficiently clustered in the sense that the demand
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graph contains at most two components.
Finally, Lemma 2 and its proof, shows that when the demand graph is connected every

MCCN will be a spanning tree making the irreducible cost matrix (Bird, 1976) well defined,
and the induced irreducible cost game is concave. This extends a similar result for the MCST
model (Bergantinos and Vidal-Puga, 2007).

Related literature: Issues of fair division among users sharing a common network resource
have attracted much attention over the past couple of decades: see e.g. Moulin (2013,
2019) and Hougaard (2018) for recent surveys. The standard approach to fair division has
been to formulate an associated cooperative game (see e..g., Peleg and Sudholter, 2007) and
use solution concepts from game theory such as the core, and the Shapley value, to guide
allocation of costs and revenues.

Since the seminal papers by Claus and Kleitman (1973) and Bird (1976), the minimum
cost spanning tree model and its many variations have been particularly popular topics in
cost and revenue sharing in networks (see e.g. Tijs et al., 2006, Bergantinos and Vidal-Puga,
2007, Bogomolnaia and Moulin, 2010, Bogomolnaia et al., 2010, Hougaard et al. 2010,
Trudeau, 2012, 2013). Implementation of minimum cost spanning trees has been studied in
Bergantinos and Lorenzo (2004,2005), Bergantinos and Vidal-Puga (2010), and Hougaard
and Tvede (2012).

The more general MCCN model seems originally introduced in Moulin (2009, 2014) in-
spired by non-cooperative cost sharing network games analyzed in the computer science lit-
erature, e.g., Anshelevich et al., (2008) and Chen et al. (2010). In particular, Moulin (2009,
2014) analyzes two types of cost sharing rules satisfying core stability and routing-proofness
(a user cannot lower her cost share by reporting as multiple aliases along an alternative path
connection her target nodes) when the induced MCCN games are balanced. Juarez and Ku-
mar (2013) consider Nash implementation in a game where users choose paths connecting
their target nodes. Using a particular game form, Hougaard and Tvede (2015) show that
the options for implementing MCCNs are much more limited than in the MCST model.
Ensuring a cost minimizing network by truthful reporting now implies compromising with
individual rationality. Hougaard and Tvede (2019) introduces users’ limited willingness to
pay for connectivity and show that welfare maximizing networks with individually rational
cost allocation are both Nash, and strong Nash implementable.

2 Model

We first recall the MCCN-model (see e.g., Moulin, 2014, or Hougaard and Tvede, 2015).
Let M = {1, . . . ,m} be a set of finitely many agents and N a set of finitely many locations
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(nodes). The set of connections (edges) between pairs of locations is N 2 =N ×N . A cost
structure C describes costs of connecting locations and is defined by a map c : N 2→ R+

with: c j j = 0 for every location j; and, c jk > 0 for every pair of locations ( j,k) with j 6= k.
Connections are undirected so ck j = c jk for every pair of locations ( j,k). Connection costs
are constant so the network is congestion free.

Every agent i ∈M has a connection demand Di = (ai,bi) ∈N ×N with ai 6= bi, where
(ai,bi) is a pair of locations that agent i wants to have connected directly or indirectly. A
demand structure is a collection of demands D = (Di)i∈M. Note that in the classic Minimum
Cost Spanning Tree (MCST) model all agents demand connection to the same location (the
source). Agents can therefore be identified by the set of nodes with the source as an addi-
tional (non-involved) ”agent”. The MCST model is therefore a special case of the MCCN
model.

A connection problem (M,D,C) consists of a set of agents, a demand structure, and a
cost structure.

Specifically, we focus on the domain of connection problems, Γ, where all locations are
demanded, i.e., ∪i∈MDi = N . Thus, for any problem in Γ, the number of locations is at
most 2m. If there are n locations and no two agents have the same demand, we can have at
most n(n−1)

2 agents.
A graph g on N is a set of connections g⊂N 2. For a cost structure C, and a graph g,

let v(C,g)≥ 0 be the total cost of the graph g

v(C,g) = ∑
jk∈g

c jk.

For a given connection problem (M,D,C), a Connection Network (CN) is a graph g
meeting the connection demand of every agent i ∈M: for every agent i ∈M there is a path
p = {n1n2,n2n3, . . . ,n`−1n`} with n1 = ai, n` = bi and n j 6= nk for every pair of locations
( j,k) with j 6= k, such that p⊆ g. Denote by C N the set of CNs.

A Minimal Cost Connection Network (MCCN) is a CN that minimizes cost: that is, g is
MCCN if

g ∈ {arg min
g∈C N

v(C,g)}.

The set of MCCNs is non-empty and finite because the set of CNs is non-empty and finite.
Clearly, every MCCN is either a tree of a forest (a graph where every component is a tree).

A connection problem (M,D,C) induces a cooperative (cost) game (M,c) where, for ev-
ery coalition of agents S⊆M, c(S) = v(C|S,gS): with gS being an MCCN of the S-projected
connection problem (S,D|S,C|S), i.e., the problem where only connections (and their cost)
between locations demanded by agents in S are considered.
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By construction, the game (M,c) is subadditive (i.e., for every S,T ⊆M such that S∩T =

/0, c(S)+ c(T )≥ c(S∪T )).
The core of the game (M,c) is given by the set of allocations,

core(M,c) = {x ∈ RM|∑
i∈M

xi = c(M),∑
i∈S

xi ≤ c(S), for all S⊂M}. (1)

Given the set of agents M, a collection B = (S1, . . . ,Sk} of non-empty subsets of M is
called balanced if there exists positive numbers δ1, . . . ,δk such that ∑ j:i∈S j δ j = 1, for all
i ∈M. By the Bondareva-Shapley theorem, core(M,c) 6= /0 if and only if for each balanced
collection, and each system of weights δ , that

∑
S⊆B

δSc(S)≥ c(M). (2)

Games satisfying (2) are called balanced.
A game (M,c) is said to be concave if, for every S,T ⊆M,

c(S∪T )+ c(S∩T )≤ c(S)+ c(T ). (3)

A game is concave if and only if, for each i ∈M, i’s marginal cost mi(S) = c(S∪ i)−c(S) is
non-increasing in S. Concave games are balanced.

The following example show that the core may be empty for games induced by connec-
tion problems in Γ.

Example 1: Consider six locations N = {a,b,c,d,e, f} and three agents M = {A,B,C}
with connection demands (a,b),(c,d), and (e, f ), respectively: so all locations are de-
manded. Connection costs are given as follows: ca f = cb f = cae = cde = cd f = cce = cbc =

cac = cbd = 1, and ci j = 10 otherwise. In the graph below only the (relevant) edges with
cost equal to 1 are illustrated.
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The induced cost game (M,c) has empty core since c(AB) = c(AC) = c(BC) = 3 and
c(ABC) = 5 (so all agents must pay at least 2, but the total cost is only 5). 2

3 Core Stability

In this section we identify classes of connection problems for which the induced cost games
are balanced (always have non-empty core). Indeed, in the special case of the MCST model,
Bird (1976) demonstrated that the induced cost games are balanced.

Given a demand structure D, define the demand graph GD =∪i∈MDi. Problems in Γ, for
which the demand graph has k components, involves at most m+ k nodes.

Example 1 above demonstrates that if users’ demands are sufficiently disconnected, the
induced cost game may have empty core. Our first result shows if the cost minimizing
network is disconnected as well, in the sense that it consists of the same components as the
demand graph, then core stability is still ensured.

Theorem 1 Let (M,C,D) ∈ Γ. Suppose there is a MCCN g for which the number of com-
ponents is equal the the number of components in GD then (M,c) is balanced.

The following Lemma constitutes the first step of the proof.
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Lemma 1 For (M,C,D) ∈ Γ suppose GD is a tree and (M,c) is balanced. Then, for every
(M′,C,D′)∈Γ with M⊂M′ and Di =D′i for every i∈M, the induced cost game is balanced.

Proof: For every S′ ⊂ M′, c(S′) ≥ c(S′ ∩M) and c(M′) = c(M). Thus, balancedness of
(M′,C,D′) follows from (M,C,D) being balanced. 2

With Lemma 1 we are ready to prove Theorem 1.

Proof: (of Theorem 1) Consider first (M,D,C) ∈ Γ with MCCN g having as many compo-
nents as GD and where every component of g is a spanning tree. The components of GD and
g are the same since no MCCN g can “cut” a component of GD. Denote by {K1, . . . ,Kl} the
partition of M given by the components of g and denote by g j the cost minimizing spanning
tree of the j’th component. Thus, |M| = m = ∑

l
j=1 |K j|. We first consider the case where,

for every component j, there are |K j| links in g j, involving |K j|+1 nodes.

For every component and arbitrary coalition S ⊆ K j, let κS be the minimum cost of
satisfying the demands of agents K j \S using links from the efficient graph g j added to the
demand subgraph of S, GD

S = ∪i∈SDi. Note that, κ /0 = c(K j) and κK j = 0.

Now, for arbitrary coalitions S⊆M consider the game defined by

c̄(S) = c(M)−∑
K j

κ
S∩K j . (4)

Clearly, c(M) = c̄(M). We claim that c(S) ≥ c̄(S) for every S ⊂ M. Indeed, suppose
c(S) < c̄(S). Thus c(S) < c(M)−∑K j κS∩K j ⇔ c(S) + ∑K j κS∩K j < c(M), which by
definition of κ contradicts that g is MCCN.

Now, we claim that the game (M, c̄) is concave. Indeed, the marginal cost is given by
mi(S) = c̄(S∪ i)− c̄(S) = ∑K j κS∩K j −∑K j κS∪i∩K j .

Thus, if i ∈ K j for which K j∩S = /0 then

mi(S) = max{clz | lz ∈ g j and g j− lz+aibi is a spanning tree}

is constant for T ⊃ S with T ∩K j = /0.
If i ∈ K j for which K j ∩S 6= /0 then mi(S) = κS∩K j −κS∪i∩K j which by definition of κ is

weakly decreasing in the size of S. Indeed, let gK j∩S denote a spanning tree obtained from
g j by replacing |S∩K j| links in g j with the demand graph of S∩K j such that the total cost
of the links removed is maximized. Then

mi(S) = max{clz | lz ∈ gK j∩S and gK j∩S− lz+aibi is a spanning tree},
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which is weakly decreasing in the size of S.
Finally, if i ∈ K j with K j∩S = /0 but K j∩T 6= /0 for T ⊃ S then

mi(S) = max{clz | lz ∈ g j and g j− lz+aibi is a spanning tree} ≥

max{clz | lz ∈ gK j∩T and gK j∩T − lz+aibi is a spanning tree}= mi(T ).

To conclude, (M, c̄) is concave and thus (M,c) is balanced.

By Lemma 1, this extends to problems where components of GD span less than |Ki|+1
nodes. 2

Our second result shows that if users’ demands are not too disconnected, in the sense
that the demand graph has at most two components, then core stability is also ensured.

Theorem 2 Let (M,C,D) ∈ Γ. If GD has at most two components, then (M,c) is balanced.

For M = {1,2} the theorem follows directly from subadditivity of the induced cost game.
For an arbitrary number of agents the theorem will be proved by Lemma 2 and 3 below.

Lemma 2 For (M,C,D) ∈ Γ, if GD is connected then (M,c) is balanced.

Proof: Since GD is connected any MCCN g will be a spanning tree. Use the construction of
the irreducible matrix (Bird, 1976) to determine the irreducible cost c̄i j of each link i j∈N 2:
c̄i j = maxlz∈pg

i j
clz where pg

i j is the unique path in g connecting nodes i and j. We claim that
the irreducible game (M, c̄), where c̄(S) for each coalition S⊆M is determined with respect
to the irreducible cost matrix, is concave. Indeed, it is well-known that if GD has the shape
of a star then the irreducible game is concave (Bergantinos and Vidal-Puga, 2007). Fix a
given agent i∈M with demand Di = (ai,bi). Thus, mi(S) = c̄(S∪ i)− c̄(S) is non-increasing
in the size of S if there exists j,k ∈ S such that ai ∈ D j and/or bi ∈ Dk. So consider the case
where neither ai nor bi is demanded by agents in S. In this case mi(S) will equal the cost
of the two cheapest links between nodes demanded by agents in S and ai,bi. Clearly, the
marginal cost of adding i to T ⊃ S is therefore non-increasing. Thus, concavity follows in
general.

Since (M, c̄), for which c̄(S) ≤ c(S) for all S ⊂ M and c̄(M) = c(M), is concave, it
follows that (M,c) is balanced. 2
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Lemma 3 For (M,C,D) ∈ Γ, if GD has two components, then (M,c) is balanced.

Proof: Consider first (M,C,D) ∈ Γ with MCCN g for which GD has two components in-
volving m+ 2 nodes. Thus, GD is a forest. By Theorem 1 we can restrict attention to the
case where g is a spanning tree connecting all m+2 nodes.

Consider an arbitrary MCCN g. For any coalition S⊆M, let κS be the minimum cost of
satisfying the demands of agents M \S using links from g added to the demand subgraph of
S, GD

S = ∪i∈SDi. In particular, κ /0 = c(M) and κM = 0.

Now, define the game (M, c̄) by

c̄(S) = c(M)−κ
S (5)

for every S ⊆ M. Clearly, c(M) = c̄(M) and c(S) ≥ c̄(S) for all S ⊆ M (suppose c(S) <
c̄(S) = c(M)− κS then c(S) + κS < c(M) which by definition of κS contradicts that g is
MCCN).

We claim that the game (M, c̄) is concave. Indeed, mi(S) = c̄(S∪ i)− c̄(S) = κS−κS∪i.
Since there are two components and the MCCN g is a spanning tree

mi( /0) = max{clz | lz ∈ g and g− lz+aibi is a spanning tree}

- that is, by definition of κ , agent i′s demanded connection aibi can replace exactly one link,
lz∈ g while making sure all demands remain satisfied; mi( /0) is equal to the most costly such
link. Note that if aibi ∈ g then mi( /0) = caibi (the link aibi “replaces” itself). Now, for any
coalition S 6= /0 denote by gS a spanning tree obtained from g by replacing |S| links in g with
the demand graph of S such that the total cost of the links removed is maximized. Then

mi(S) = max{clz | lz ∈ gS and gS− lz+aibi is a spanning tree}.

Thus, the marginal cost of agent i is non-increasing for T ⊃ S. To conclude, (M, c̄) is
concave and thus (M,c) is balanced.

Note that if there are three or more components, this is no longer true as adding the
demanded link aibi of agent i may enable deletion of more than one link whilst keeping the
resulting graph a spanning tree. Therefore the game may not be concave in this case, as
illustrated by Example 1.

By Lemma 1, this extends to problems where components of GD span less than |Ki|+1
nodes. 2
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4 Final Remarks

So far we have focused on the domain of MCCN problems for which all locations are de-
manded. We close with a few remarks on the presence of Steiner nodes in the MCCN model.

As mentioned in the Introduction examples in Megiddo (1978) and Tamir (1991) imply
that games with empty core can occur in problems with at least three agents where the
demand graph is connected and includes the shape of a star by adding three (or more) Steiner
nodes.

Yet, we conjecture that if the demand graph has the shape of a connected chain (i.e.,
agents’ demands form a path with bi = ai+1 for i = 1, . . . ,m−1) the induced cost games are
balanced even when allowing for the presence of Steiner nodes. Moreover, we conjecture
that if the demand graph is connected, the induced game is balanced if at most two Steiner
nodes are introduced.

References

Anshelevich, E., A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler & T. Roughgarden
(2008), The price of stability for network design with fair cost allocation, SIAM Jour-
nal of Computing 38, 1602–1623.

Bergantinos, G., & L. Lorenzo (2004), A non-cooperative approach to the cost spanning
tree problem, Mathematical Methods of Operations Research 59, 393–403.

Bergantinos, G., & L. Lorenzo (2005), Optimal equilibria in the non-cooperative game
associated with cost spanning tree problems, Annals of Operations Research 137,
101–115.

Bergantinos, G., & J.J. Vidal-Puga (2007), A fair rule in minimum cost spanning tree
problems, Journal of Economic Theory, 137, 326–352 .

Bergantinos, G. & J.J. Vidal-Puga (2010), Realizing fair outcomes in minimum cost span-
ning tree problems through non-cooperative mechanisms, European Journal of Oper-
ational Research, 201, 811-820.

Bird, C.G. (1976), On cost allocation for a spanning tree: a game theoretic approach,
Networks 6, 335-350.

Bogomolnaia, A., & H. Moulin (2010), Sharing a minimal cost spanning tree: Beyond the
Folk solution, Games and Economic Behavior 69, 238–248.

Bogomolnaia, A., R. Holzman & H. Moulin (2010), Sharing the cost of a capacity network,
Mathematics of Operations Research, 35, 173-192.

10



Chen, H.-L., T. Roughgarden & G. Valiant (2010), Designing network protocols for good
equilibria, SIAM Journal of Computing 39, 1799–1832.

Claus, A. and D.J. Kleitman (1973), Cost allocation for a spanning tree, Networks, 3, 289-
304.

Hougaard, J.L. (2018), Allocation in Networks, MIT Press.

Hougaard, J.L. and H. Moulin (2014), Sharing the cost of redundant items, Games and
Economic Behavior, 87, 339-352.

Hougaard, J.L., H. Moulin and L.P. Osterdal (2010), Decentralized pricing in minimum
cost spanning trees, Economic Theory, 44, 293-306.

Hougaard, J.L. & M. Tvede (2012), Truth-telling and Nash equilibria in minimum cost
spanning tree models, European Journal of Operational Research 222, 566–570.

Hougaard, J.L. & M. Tvede (2015), Minimum cost connection networks: truth-telling and
implementation, Journal of Economic Theory, 157, 76–99.

Hougaard, J.L. & M. Tvede (2019), Implementation of optimal connection networks, Manus.

Juarez, R. & R. Kumar (2013), Implementing efficient graphs in connection networks,
Economic Theory 54, 359-403.

Korte, B. and J. Vygen (2018), Combinatorial Optimization: Theory and Algorithms, Sixth
Edition, Springer.

Megiddo, N., (1978), Cost allocation for Steiner trees, Networks, 8, 1-6.

Moulin, H., (2009), Pricing traffic in a spanning network, Proceedings of the 10th ACM
conference on Electronic commerce, 21-30.

Moulin, H., (2014), Pricing traffic in a spanning network, Games and Economic Behavior
86, 475-490.

Moulin, H., (2019), Fair division in the Internet age, Annual Review of Economics, 11

Peleg, B. and P. Sudholter (2007), Introduction to the Theory of Cooperative Games, Sec-
ond Edition, Kluwer.

Tamir, A., (1991), On the core of network synthesis games, Mathematical Programming
50, 123–135.

Trudeau, C., (2012), A new stable and more responsive cost sharing solution for minimum
cost spanning tree problems, Games and Economic Behavior, 75, 402-412.

11



Trudeau, C. (2013), Characterizations of the Kar and folk solutions for minimum cost
spanning tree problems, International Game Theory Review, 15, 134-143.

Young H.P. (1998), Cost allocation, demand revelation, and core implementation, Mathe-
matical Social Sciences, 36, 213-228.

Tijs, S., R. Branzei, S. Moretti & H. Norde (2006), Obligation rules for minimum cost
spanning tree situations and their monotonicity properties, European Journal of Oper-
ational Research 175, 121–134.

12


	IFRO_WP_2020_07_forside
	IFRO_WP_2020_07_kolofon
	Threes2020

