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Abstract

We apply nonparametric panel data kernel regression to investigate production risk, out-
put price uncertainty, and risk attitudes of Polish dairy farms based on a firm-level un-
balanced panel data set that covers the period 2004–2010. We compare different model
specifications and different approaches for obtaining firm-specific measures of risk atti-
tudes. We found that Polish dairy farmers are risk averse regarding production risk and
price uncertainty. According to our results, Polish dairy farmers perceive the production
risk as being more significant than the risk related to output price uncertainty.
Keywords: production risk, price uncertainty, nonparametric econometrics, panel data,
Polish dairy farms

JEL codes: C14, C23, D24, Q12
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1. Introduction

Uncertainty and risk are inherent features of agricultural production (Moschini and Hen-
nessy, 2001).1 Farmers’ revenue is uncertain due to both output price uncertainty and
production uncertainty (production risk). The latter is related to the uncertainty of the
outcome of biological processes in agricultural production due to weather conditions, plant
and animal diseases, natural disasters (droughts, floods etc.), and even climatic changes
in the long run. Therefore, a proper analysis of agricultural production technologies and
farmers’ production decisions should account for these uncertainties, factors that influence
the uncertainties, and the producers’ attitudes towards risk (risk preferences).
The predominant approach to investigating production risk is based on the parametric

stochastic production function which was introduced by Just and Pope (1978).2 Most
studies that use this approach (e.g. Griffiths and Anderson, 1982; Antle, 1983, 1987;
Kumbhakar, 1993, 2002b; Tveterås, 1999; Tveterås, Flaten and Lien, 2011; Asche and
Tveterås, 1999, to mention only a few.) focus on the risk in production in agriculture or
aquaculture.
Other studies (e.g. Sandmo, 1971; Chambers, 1983; Appelbaum and Ullah, 1997; Kumb-

hakar, 2002b,a; Kumbhakar and Tsionas, 2009) only analyse price risk and ignore produc-
tion risk or analyse price risk and production risk separately. However, since farmers face
both price risk and production risk at the same time, both sources of risk should be anal-
ysed simultaneously, because neglecting one of them may result in a misspecified model
(Kumbhakar, 2001). Therefore, we use the method proposed by Kumbhakar (2001) that
extends the approach of Just and Pope (1978) to simultaneously account for production
risk and price uncertainty.
Most of the studies that use the Just and Pope (1978) framework rely on rather strong

assumptions, e.g. that the mean production function (and output variance function) are
of a distinct (parametric) functional form. It is well known that the specification of the
functional form of a production function (or generally a regression function) plays a fun-
damental role in econometric analyses. If the functional form of the regression function
is different from the “true” functional form of the relationship between the dependent

1 Although the term “risk” often has negative connotations, we use the terms “risk,” “uncertainty,” and
“variability” interchangeably, with all terms meaning that a future state (e.g. a price or a production
output) is not known in advance (in the decision making process) and might be smaller or larger than
the expected value (see e.g. comments included in the paper of Gardebroek, Chavez and Lansink,
2010).

2 Alternatively, the “state contingent approach” proposed by Chambers and Quiggin (2000) can also
be used to analyse production risk. However, this approach is rarely used in empirical studies mainly
because it requires very detailed and large data sets in order to reflect a reasonable number of states
of nature (Just, 2003). Rasmussen (2004) suggest estimating “state contingent” production functions
for only a few states of nature. A recent discussion on the “state contingent approach” can be found
in Shankar (2012).
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variable and its covariates, the obtained results will be biased and their relevance ques-
tionable.
To avoid a possible misspecification of the functional form of the regression functions

in the Just and Pope (1978) framework, Kumbhakar and Tsionas (2009, 2010) proposed
to use nonparametric regression methods. Our analysis is based on the approach of
Kumbhakar and Tsionas (2009, 2010) but it includes three important improvements. First,
although Kumbhakar and Tsionas (2009, 2010) use panel data in both of their studies, they
estimate a “pooled model” that does not account for individual and time heterogeneity.
In contrast, we use a nonparametric regression method that was proposed by Henderson
and Simar (2005) and Racine (2008) which accounts for the panel structure of our data
set.
Second, while Kumbhakar and Tsionas (2009, 2010) do not use any formal tests to

assess the statistical significances of their estimates, we use the bootstrapping method
proposed by Racine (1997) and Racine, Hart and Li (2006) to test the significance of the
explanatory variables in the nonparametric regressions.
Third, while Kumbhakar and Tsionas (2009, 2010) use a local-constant kernel estimator,

we use a local-linear kernel estimator, as it usually outperforms the local-constant kernel
estimator (Li and Racine, 2004).
Finally, we compare different specifications in the nonparametric estimation of the

mean production function and compare different approaches to obtain the values of the
risk preference functions.
We apply this method to Polish dairy farms. Dairy farmers are affected by production

risk, e.g. caused by weather conditions that influence the quantity and quality of the feed
produced at the farm or by animal diseases that directly influence the milk production.
Dairy farmers in the European Union (EU) have been less affected by milk price volatility
and therefore price risk in the past, but this has changed in recent years. The reason
is an ongoing process of liberalisation of the dairy sector in the EU. Furthermore, it
is anticipated that price uncertainty may even increase in the coming years due to the
expected abolition of the milk quota system in the EU in 2015. Therefore, both theoretical
and empirical studies on farms’ production and price risk are important and relevant.
The rest of the paper is organised as follows. Section 2 presents a theoretical framework

for the risk analysis. Section 3 provides the specification of the applied nonparametric
econometric model, section 4 describes the data set on Polish dairy farms that is used
in our empirical application, and section 5 presents the results of the analysis. Section 6
concludes.
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2. Analytical framework

Just and Pope (1978) proposed an analytical framework to investigate the production risk
using the model of a stochastic production function. The general form of the Just and
Pope (1978) production function is given by:

y = f(x, z) + u = f(x, z) + h(x, z) ε, (1)

where y is the observed output quantity, x is a vector of variable input quantities (x1, . . . , xJ),
z is a vector of quasi-fixed input quantities (z1, . . . , zK), f(.) is the mean production
function, h(.) ≥ 0 is the output variability function, u is an additive and possibly het-
eroskedastic error term with zero mean and variance (h(.))2, and ε is a homoskedastic
error term with zero mean and a variance of one. The output variance function h(x, z)
is used to analyse the marginal influences of inputs on the variance of production. The
marginal effect of the j-th input is risk increasing if the first order partial derivative of
the h(x, z) function with respect to j-th input (denoted by hj(x, z)) is positive, or risk
decreasing if hj(x, z) is negative. Consequently, inputs which have an insignificant effect
on h(x, z) are risk neutral.
The model of Just and Pope (1978) has been extended to panel data by Griffiths and

Anderson (1982). Kumbhakar (1993) implemented the estimation of technical efficiency.
Kumbhakar (2001) included price uncertainty (both regarding the output price and the
input prices) and recently Kumbhakar and Tsionas (2009) derived models that include
production risk, output price uncertainty, and technical efficiency in a nonparametric
framework.
An extensive description of the models that generalise the Just and Pope (1978) model

to account for both production risk and price uncertainty is given in Kumbhakar (2001)
and Kumbhakar and Tsionas (2009). However, for the convenience of the reader, we
briefly present the fundamental derivations of this modelling approach here.
In the analyses of the risk in production it is often assumed that producers maximise

the expected utility based on anticipated normalised restricted profit:3

max
x

E

[
U

(
πe

p

)]
, (2)

where πe is the anticipated restricted profit4 and p is the output price.

3 Since the anticipated restricted profit is homogeneous of degree one in input and output prices, it
is common to impose the homogeneity condition by normalizing anticipated profit with either the
output price or the price of one of the inputs (Kumbhakar and Tsionas, 2009).

4 “Restricted profit” can also be called “short-run profit” or “gross margin.” For simplicity, we use the
term “profit” in the remainder of the paper.

5 IFRO Working Paper 2013 / 6



2.1. Production risk only

When only the production risk is taken into consideration, the anticipated profit is defined
as:

πe = p y − w′ x = p f(x, z)− w′ x+ p h(x, z) ε, (3)

where w is a vector of the prices of the variable inputs (w1, . . . , wJ).
In this case, the normalised anticipated profit is given by:

πe

p
= y − w′x

p
= f(x, z)− w′x

p
+ h(x, z) ε = f(x, z)− w̃′x+ h(x, z) ε, (4)

where w̃ is a vector of normalised input prices with elements w̃j = wj/p ∀ j = 1, . . . , J .
Under the assumption that the producers maximise their expected utility of normalised

anticipated profit (E [U (πe/p)]), we get the following first-order conditions (FOC):

E

[
U ′
(
πe

p

)
(fj(x, z)− w̃j + hj(x, z) ε)

]
= 0 ∀ j = 1, . . . , J, (5)

where U ′(πe/p) is the marginal utility of anticipated normalised profit, and fj and hj

denote the first derivatives of the mean production function and the output variability
function, respectively, with respect to the j-th variable input.
To derive the risk preference function, one can rewrite (5) in the following way:

fj(x, z) = w̃j − hj(x, z)
E[U ′(πe/p) ε]
E[U ′(πe/p)] = w̃j − hj(x, z) θ1 ∀ j = 1, . . . , J, (6)

where
θ1 ≡

E[U ′(πe/p) ε]
E[U ′(πe/p)] (7)

is the risk preference function. A positive (negative) value of θ1 indicates risk averse (risk
seeking) producers and θ1 = 0 indicates risk neutral producers (Chambers, 1983).
As shown by Kumbhakar and Tsionas (2010), the risk preference function (θ1) can be

related to the Arrow-Pratt measure of risk aversion in the following way:5

θ1 ≡
E [U ′ (πe/p) ε]
E [U ′ (πe/p)] = E [(U ′ (πe/p) + U ′′ (πe/p) · h(x, z) ε) ε]

E [U ′ (πe/p) + U ′′ (πe/p) · h(x, z) ε]

= U ′′(µπ)h(x, z)
U ′(µπ) = −AR(µπ) h(x, z) (8)

where AR(µπ) = −U ′′(µπ)/U ′(µπ) is the Arrow-Pratt measure of risk aversion and µπ =
E[πe/p] is the expected profit.

5The proof is similar to the proof of Proposition 1 in the Appendix of Kumbhakar and Tveterås (2003).
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The risk premium (RP) is the amount that makes the producer indifferent between the
uncertain normalised profit (πe/p) and the certain profit (E[πe/p]−RP ). Based on a first-
order Taylor series approximation of U(E[πe/p] − RP ) at RP = 0 and a second-order
approximation of U(E[πe/p]) at πe/p = µπ, Antle (1987) and Chavas and Holt (1996)
show that the risk premium can be obtained by:

RP = 0.5 AR(µπ) Var (πe/p) . (9)

Since the variance of the anticipated profit Var(πe/p) is given by h(x, z)2 in the model
that accounts for production risk only, we can write:

RP = −0.5 θ1

h(x, z) h(x, z)2 = −0.5 θ1 h(x, z). (10)

2.2. Price risk only

In the case of no production risk (i.e. h(x, z) = 0) but uncertain output price, Kumbhakar
and Tsionas (2009) follow Zellner, Kmenta and Dreze (1966) and model the anticipated
output price as pe = p eη, where p is the observed (realised) output price and η is an
error term that reflects the uncertainty of the anticipated output price. It is assumed
that E[eη] = 1 so that the expected value of pe is the same as the observed price p. Under
these assumptions, the anticipated profit is defined as:

πe = pey − wx = pf(x, z)− w′x+ p f(x, z)(eη − 1). (11)

Hence, the anticipated normalised profit is defined as:

πe

p
= f(x, z)− w̃′x+ f(x, z)(eη − 1) = µπ + f(x, z)ω1, (12)

where ω1 = (eη − 1).
The FOC for the maximisation of the expected utility are:

E

[
U ′
(
πe

p

)
(fj(x, z)− w̃j + fj(x, z)ω1))

]
= 0 ∀ j = 1, . . . , J. (13)

These conditions may be rewritten as:

fj(x, z)(1 + θ2) = w̃j (14)

where
θ2 ≡

E[U ′(πe/p)ω1]
E[U ′(πe/p)] (15)
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is the risk preference function related to output price uncertainty. A positive (negative)
value of θ2 indicates risk averse (risk seeking) producers and θ2 = 0 indicates risk neutral
producers.
We can use the same motivation as used to relate the risk preference function to the

Arrow-Pratt measure of risk aversion and write:6

θ2 ≡
E[U ′(πe/p)ω1]
E[U ′(πe/p)] = E[(U ′(πe/p) + U ′′(πe/p) · f(x, z)ω1)ω1]

E[U ′(πe/p) + U ′′(πe/p) · f(x, z)ω1]

= U ′′(µπ)f(x, z)
U ′(µπ) = −AR(µπ)f(x, z) (16)

Since the variance of normalised profit Var(πe/p) is given by (f(x, z))2 Var(ω1) in the
model with price risk only, the risk premium can be obtained as follows:

RP = −0.5 θ2

f(x, z) (f(x, z))2 Var(ω1) = −0.5 θ2 f(x, z) Var(ω1). (17)

2.3. Both production risk and price risk

Finally, when the model accounts for both production risk and output price uncertainty,
the normalised anticipated profit is specified as:

πe/p = eη y − w̃′x = f(x, z)− w̃′x+ f(x, z)(eη − 1) + h(x, z)(eηε)

≡ µπ + f(x, z)ω1 + h(x, z)ω2 (18)

where ω2 = eηε.7

The first-order conditions for the maximisation of the expected utility are:

E

[
U ′
(
πe

p

)
(fj(x, z)− w̃j + fj(x, z)ω1 + hj(x, z)ω2)

]
= 0 ∀ j = 1, . . . , J. (19)

This can be expressed as:

fj(x, z)(1 + θ̃2) = w̃j − hj(x, z) θ̃1 ∀ j = 1, . . . , J, (20)

where
θ̃2 ≡

E[U ′(πe/p)ω2]
E[U ′(πe/p)] = −AR(µπ)f(x, z), (21)

and
θ̃1 ≡

E[U ′(πe/p)ω1]
E[U ′(πe/p)] = −AR(µπ)h(x, z), (22)

6 The proof is analogous to the proof of Proposition 1 in the Appendix of Kumbhakar and Tveterås
(2003).

7 Following Kumbhakar and Tsionas (2009) we assume independence of η and ε.
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If production risk and output price uncertainty are considered jointly, the variance of
normalised anticipated profit Var(πe/p) is given by (f(x, z))2 Var(ω1)+(h(x, z))2 Var(ω2).
Once estimates of either θ̃1 or θ̃2 are obtained, the risk premium can be calculated either
from:

RP = −0.5 θ̃1

h(x, z)
(
(f(x, z))2 Var(ω1) + h(x, z)2 Var(ω2)

)
= −0.5 θ̃1

(
(f(x, z))2 Var(ω1)

h(x, z) + h(x, z) Var(ω2)
)

(23)

or from:

RP = −0.5 θ̃2

f(x, z) ·
(
(f(x, z))2 Var(ω1) + (h(x, z))2 Var(ω2)

)
= −0.5 θ̃2

(
f(x, z) Var(ω1) + (h(x, z))2 Var(ω2)

f(x, z)

)
. (24)

3. Nonparametric regression model

Although the analysis of risk and uncertainty based on the Just-Pope production func-
tion has been studied extensively in the past three decades, most studies use parametric
specifications of the production, risk variance and risk preference functions. The only
applications of the Just and Pope (1978) approach that use nonparametric regression
methods are the studies of Kumbhakar and Tsionas (2009, 2010).
Following Kumbhakar and Tsionas (2009, 2010) we assume that the production tech-

nology is of a Just and Pope (1978) form:

yit = f(xit, zit) + uit = f(xit, zit) + h(xit, zit)εit (25)

where all variables are defined as before but the subscripts i and t denote the individual
firm and the time period, respectively.
In order to obtain nonparametric estimates of the mean production function f(.), the

output variability function h(.), and the risk preference functions θ1, θ2, θ̃1, and θ̃2, we
follow the multi-step nonparametric estimation procedure proposed by Kumbhakar and
Tsionas (2009). In the first step, the estimates of the mean production function of the
Just and Pope (1978) technology are obtained using nonparametric kernel regression.
In the second step, the residuals of the model which was estimated in the first step
are regressed on the same set of explanatory variables as in the estimation of the mean
production function.8 Once nonparametric estimates of the mean production function

8 Just and Pope (1978) showed that the estimation of the risk variance function can be obtained after
logarithmic transformation of the (absolute values) of residuals of the mean production function and
remain explanatory variables. Kumbhakar and Tsionas (2009) regressed the squares of the residuals
(or their absolute values) on the explanatory variables. The approaches of Just and Pope (1978) and
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and the output variance function have been obtained, the risk preference functions can
be nonparametrically estimated based on the theoretical model. We follow Kumbhakar
and Tsionas (2009) who propose the following approach to estimate the risk preference
functions. The risk preference function of the model with production risk only (7) is
nonparametrically estimated based on the averaged FOC of this model (6):

D1 ≡
1
J

J∑
j=1

[
fj(x, z)− w̃j
−hj(x, z)

]
= φ1(w̃, x, z) + ξ1, (26)

where ξ1 is an error term that captures optimisation errors, although these errors are not
explicitly stated in the model (Kumbhakar and Tsionas, 2009). Setting the error term ξ1

to zero, we can obtain the estimates of the risk preference function θ1 as the predicted
values of the regression function φ1(.), i.e. θ1 = φ̂1(w̃, x, z).
Analogously, the risk preference function of the model with price uncertainty only (15)

is nonparametrically estimated based on the averaged FOC of this model (14):

D2 ≡
1
J

J∑
j=1

[
w̃j

fj(x, z)
− 1

]
= φ2(w̃, x, z) + ξ2, (27)

where ξ2 is an error term. Setting the error term ξ2 to zero, we can obtain the estimates
of the risk preference function θ2 as the predicted values of the regression function φ2(.),
i.e. θ2 = φ̂2(w̃, x, z).
A similar approach is used to obtain the risk preference function from the model that

incorporates both production risk and output price uncertainty (21, 22). Kumbhakar and
Tsionas (2009) propose to first estimate a regression function for the averaged FOC of
this model:

D3 ≡
1
J

J∑
j=1

[
w̃j − hj(x, z)θ̃1

w̃1 − h1(x, z)θ̃1

]
= 1
J

J∑
j=1

fj
f1

= φ3(w̃, x, z) + ξ3, (28)

where ξ3 is an error term. Using the predicted values from the regression function
φ3(w̃, x, z), denoted φ̂3(w̃, x, z), and solving (28) for θ̃1 (setting ξ3 to 0), the nonpara-
metric estimates of the risk preference function related to the production risk θ̃1 can be
obtained from:

θ̃1 =
∑J
j=1

[
w̃j − φ̂3(w̃, x, z)w̃1

]
∑J
j=1

[
hj(x, z)− φ̂3(w̃, x, z)h1(x, z)

] (29)

Kumbhakar and Tsionas (2009) are basically equivalent. Most of the studies that investigate the risk
using the Just and Pope (1978) framework use the Cobb-Douglas or Translog functional form as an
approximation of the “true” output variability function.
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Solving the FOC (20) for θ̃2, the estimates of θ̃2 can be obtained based on the estimates
of θ̃1:9

θ̃2 =
∑J
j=1

[
w̃j − hj(x, z)θ̃1

]
∑J
j=1 fj(x, z)

− 1 (30)

The nonparametric estimation of functions φ1(.), φ2(.) and φ3(.) is easily affected by the
“curse of dimensionality,” especially if the number of variable inputs (J) is large, because
the prices of the variable inputs are used along with the quantities of all variable and fixed
inputs as explanatory variables so that the number of explanatory variables increases to
2·J+K. In order to avoid the (nonparametric) estimation of the risk preference functions,
observation-specific values of these functions can be directly obtained by ignoring the
optimisation errors that are captured by ξ1, ξ2 and ξ3. In this case, the values of the
risk preference function of the model with only production risk, and the values of the
risk preference function of the model with only price uncertainty can be obtained by
θ1 = D1 and θ2 = D2 as defined in equations (26) and (27), respectively. The values of
the risk preference functions of the model that accounts both for production risk and price
uncertainty, θ̃1 and θ̃2, can be directly derived from equations (29) and (30) by substituting
the calculated values of D3 for the estimated values of φ̂3(w̃, x, z) in equation (29).
For the nonparametric estimations of the mean production function, the output variance

function, and the risk preference functions, we use the local-linear kernel estimator instead
of the local constant estimator that was used by Kumbhakar and Tsionas (2009, 2010),
because the local-linear estimator usually outperforms the local-constant estimator (Li
and Racine, 2004). Furthermore, we extend the approach of Kumbhakar and Tsionas
(2009, 2010) to the panel data context.10

In order to account for the panel data structure, we follow Henderson and Simar (2005)
and Racine (2008) who estimate a fully nonparametric two-ways panel data model by
applying the nonparametric regression method proposed by Li and Racine (2004) and
Racine and Li (2004) that can handle both continuous and categorical explanatory vari-
ables. In this approach to nonparametric panel data estimation, categorical explanatory
variables of time and firm ID are used to reflect the panel structure of the data. This
estimation method has several advantages in applied production analysis.11 However, in
the context of this paper there are two important advantages. First, this method allows
one to estimate the regression function without making strong assumptions regarding the
functional form of the relationship between the dependent variable and the explanatory

9 There is a typo in the formula in Kumbhakar and Tsionas (2009), where the following formula is given:
θ̃2 =

(∑J
j=1

[
w̃j − hj(x, z)θ̃1

])
/
(∑J

j=1 fj(x, z)− 1
)
.

10 Although Kumbhakar and Tsionas (2009, 2010) use panel data sets (on salmon farming in Norway
and rice farming in the Philippines), they estimate “pooled” models that do not account for the panel
structure of their data. Kumbhakar and Tsionas (2009) included a time trend but they neglected
individual heterogeneity.

11 For an extensive discussion of this estimation method and its usefulness in applied production analysis
see Czekaj and Henningsen (2012, 2013).
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variables. Secondly, the method allows us to estimate observation-specific measures of the
production technology and the risk preferences (e.g. marginal products, partial produc-
tion elasticities, risk premiums) without any parametric assumptions. This is especially
desirable in the analysis of risk behaviour, because a parametric misspecification affects
the error term u so that the analysis of the risk is based on incorrect measures of output
variability. Furthermore, we test the statistical significance of the explanatory variables
in the nonparametrically estimated mean production function, output variance function,
and the risk preference functions using the bootstrapping method proposed by Racine
(1997) and Racine, Hart and Li (2006).

4. Data

In this study, we use an unbalanced panel data set from the Polish Farm Accountancy
Data Network (FADN) which consists of farms specialising in dairy production12 in the
period 2004 to 2010. Our data set includes 4,650 observations of 736 farms in total.
The dependent variable of the mean production function (Y ) is the farms’ output which

is measured as a quantity index of total agricultural production.13 Four inputs are used in
the regression analyses: labour (L), land (A), intermediate inputs (V ), and capital (K).
Labour is measured by Annual Work Units (AWU), where 1 AWU equals 2200 hours of
work. The total utilised agricultural area in hectares is used as a measure of land input.
Intermediate inputs are measured as the sum of the total (deflated) farming overheads
(e.g. maintenance, energy, services, other direct inputs) and specific costs (e.g. fodder,
medicine, fertilisers, etc.).14 The capital input is measured as the (deflated) value of total
fixed assets excluding the value of land.15 Descriptive statistics of the regression variables
are presented in Table 1.
The average herd size was around 18 milking cows while the average annual milk yield

per milking cow was about 4,700 kilograms of milk.16

12We selected all farms that are classified as specialised in dairy production according to the FADN
methodology for at least 5 out of the 7 years covered in the data set.

13 The quantity index of the aggregated output was calculated by dividing the value of the aggregated
production by farm-specific output price indices. The farm-specific price indices of the aggregated
output were calculated from regional prices of the main agricultural products that are published by
the Central Statistical Office of Poland (GUS, 2012a). using Fisher’s “ideal” index formula (defined as
the geometric mean of the Paasche and Laspeyres price indices). In order to avoid arbitrarily choosing
one year and one region to obtain the “base prices” (p0), and arbitrarily choosing one observation to
obtain the “base quantities” (q0), we choose the sample means as “base prices” and “base quantities.”

14 Since the prices of the intermediate inputs were unavailable at the individual (farm) and regional
level, we used country-level price indices of products, goods and services purchased by private farms
in Polish agriculture published by the Central Statistical Office of Poland (GUS, 2012b) to deflate the
costs of intermediate inputs.

15 Similarly to the intermediate inputs, no reliable prices of capital were available at the farm level or
the regional level. Therefore, we use country level price indices of investment goods and services
purchased by private farms in agriculture in Poland published by the Central Statistical Office of
Poland (GUS, 2012b) to obtain the quantity indices of the capital input.

16 We assume that 1 litre of milk equals 1.031 kg.
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Table 1: Descriptive statistics of the sample 2004–2010
Variable Min Median Mean Max Std. dev.
Output (Y ) [in 1,000PLN∗] 1.606 93.430 116.900 1097.000 93.763
Labour (L) [in AWU] 0.430 1.890 1.886 5.850 0.484
Land (A) [in ha] 2.880 20.080 23.510 295.700 15.646
Intermediate inputs (V ) [in 1,000PLN∗∗] 3.716 45.570 57.100 544.300 45.132
Capital stock (K) [in 1,000PLN∗∗] 15.080 230.300 283.000 2378.000 210.562
Cattle (average number of cows) 1.620 15.850 17.790 120.600 10.353
Average milk yield (kg per cow per year) 1290.000 4549.000 4734.000 10880.000 1297.832

∗ = deflated, base = sample average (see footnotes 13),
∗∗ = deflated, base = 2004.

We treat land and intermediate inputs as variable inputs and the remaining inputs
(labour and capital) as quasi-fixed inputs. While it is standard to treat intermediate
inputs as variable inputs, we also treat land as a variable input, although this is less
common in the literature. We do this because the farms can adjust their land input by
renting land which is the case for 63.2% of the observations. In contrast, we treat labour
as a quasi-fixed input because Polish family farms which specialise in dairy production
mainly use family labour. For example, in our specific sample, hired labour is only used
in 16.6% of the observations while the average share of hired labour in total labour is
only 12.7% (6.1% at the median) within the farms that use hired labour. We also treat
capital as a quasi-fixed input. This is a common assumption in the analysis of firm level
risk when price uncertainty is involved. The reason is that the adjustments in the use of
this input may not be observable in a short unbalanced panel data such as the one we
have used.
The price of land is obtained as the regional average rent paid by farmers in the sample.

Furthermore we use price indices of the intermediate inputs and the aggregated output
as described in footnotes 13 and 14.

5. Results

All estimations and calculations were conducted within the statistical software environ-
ment “R” (R Development Core Team, 2012) using the add-on package “plm” (Croissant
and Millo, 2008) for panel data estimations and the add-on package “np” (Hayfield and
Racine, 2008) for nonparametric regression and specification tests.17

Since the Just and Pope (1978) production function relies on an additive error struc-
ture, we follow Kumbhakar and Tsionas (2009) and estimate the mean production func-
tion f(x, z) in levels of the regression variables (output quantity and input quantities).

17The R commands used for this analysis are available in Appendix E.
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We apply the local-linear kernel regression method proposed by Li and Racine (2004)
and Racine and Li (2004) that can handle both continuous and categorical explanatory
variables. In addition to the four (continuous) input quantities, we use two additional
categorical explanatory variables to account for the panel structure of the data set: the
firm ID and the time (Henderson and Simar, 2005). This panel data specification allows
for possible individual and time heterogeneity in the data without imposing any assump-
tions regarding the specification of individual and time effects (Czekaj and Henningsen,
2013).
The estimation results are presented in Table A1 in Appendix A. According to the

bootstrap significance test proposed by Racine (1997) and Racine, Hart and Li (2006),
not a single input quantity had a statistically significant influence on the output quantity.
Furthermore, many estimated values of the risk preference functions and many estimated
risk premiums had implausible or even infinite values, because the marginal effects of the
input quantities on f() and h() were often close to zero or equal to zero so that fractions
with these marginal effects in the denominator became very large or even infinite.
One reason for this might be that the “true” relationship between the input quantities

and the output quantity is not similar to a (local-)linear production function, which
would imply perfect (local) substitutability between the inputs. Hence, the bandwidths
of the input quantities must be very small in order to allow for considerably nonlinear
relationships between the input quantities and the output quantity but these bandwidths
might be too small to find statistically significant effects. Another problem with the
nonparametric estimation with fixed bandwidths and regression variables in levels arises
because the values of the regression variables in our data set have very right-skewed
distributions so that there are much less observations within the bandwidths for large
values of these variables (corresponding to large farms) than there are for small values
of these variables (corresponding to small farms). Hence, the regression function could
be under-smoothed for large farms and/or over-smoothed for small farms (Czekaj and
Henningsen, 2012).
Therefore, we used a logarithmic transformation of all regression variables to estimate

the mean production function and the risk variance function.18 However, the use of the
logarithmic transformation of regression variables to estimate the Just and Pope (1978)
production function might not be suitable (Tveterås, Flaten and Lien, 2011). Just and
Pope (1978) already showed that the logarithmic transformation of equation (25) with an
additive error term becomes

ln yit = ln f(xit, zit) + ln
[
1 + h(xit, zit)ε

f(xit, zit)

]
. (31)

18The logarithmic transformation results in rather evenly distributed regression variables, which is de-
sirable when kernel estimators with fixed bandwidths are used.
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The estimation of this model might result in biased estimates because the error term:19

u∗ ≡ ln
[
1 + h(x, z)ε

f(x, z)

]
(32)

is likely to be correlated with the explanatory variables. Similar conclusions can be found
in Antle (2010) who analyses the bias in least-squares estimations of multiplicative error
models. However, the bias of estimation of the model (25) using the logarithmic form (31)
is small if instability in production is relatively small (Just and Pope, 1978). Re-arranging
equation (32), we get:

exp(u∗)− 1 = h(x, z)ε
f(x, z) . (33)

A first-order Taylor series approximation of the left-hand side of the above equation at
u∗ = 0 results in:

u∗ ≈ h(x, z)ε
f(x, z) . (34)

The right-hand side of the above equation is uncorrelated with x and z if the assumptions
that are required for an unbiased estimation of the Just-Pope production model with
an additive error term (25) are met.20 Hence, we can conclude that the biases in the
estimation of model (31) are negligible if u∗ is sufficiently close to zero. Therefore, we
check whether u∗ is close to zero and whether u∗ ≈ exp(u∗)−1 is a suitable approximation.
These questions are graphically illustrated in Figures A1 and A2 in Appendix D. Figure A1
shows the scatter plot of u∗ vs. exp(u∗)−1. If u∗ = exp(u∗)−1, all points would be at the
45 degree line. It can be seen that for our dataset most observations (except some outliers)
are located very close to or on this line. To further explore the bias, we present histograms
of exp(u∗) − 1, u∗ and their difference u∗ − (exp(u∗) − 1) in Figure A2. The difference
between u∗ and exp(u∗)− 1 is less than 0.05 for 0.95% of the observations. This indicates
that the bias induced by estimating model (25) using logarithmic transformation (31) is
relatively small in the case of our data and model.
Hence, we decided to continue our analysis with the nonparametric estimation of the

mean production function with logarithmic input and output quantities. The results
of this estimation are presented in the Table 2. The cross-validated bandwidth for the
(categorical) time variable is equal to 1, which indicates that this variable is smoothed
out (irrelevant). In contrast, the cross-validated bandwidth for the (categorical) farm
ID is relatively small, which allows for considerable heterogeneity between the individual
farms.21 The cross-validated bandwidth for the logarithmic intermediate inputs ln(V ) is

19For simplicity, we omit subscripts indicating individuals, time and inputs.
20 The Just-Pope production model with additive error term (25) can be estimated without bias if ε is

not correlated with x or z, because in this case the error term u = h(x, z) ε is also uncorrelated with
x or z. This also implies that u∗ ≈ h(x, z) ε/f(x, z) = u/f(x, z) is uncorrelated with x or z.

21Parmeter et al. (2012) and Czekaj and Henningsen (2012) obtained similar bandwidths for the ID
variable using this estimator to investigate production functions based on panel data.
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less than two times the variable’s standard deviation22 which indicates that the estimated
nonparametric regression function is nonlinear in this variable. The cross-validated band-
widths for all other (continuous) inputs quantities are very large. This indicates that the
mean production function f(.) is linear in ln(L) for given values of all other explanatory
variables (ln(A), ln(V ), ln(K), ID, time), linear in ln(A) for given values of all other
explanatory variables (ln(L), ln(V ), ln(K), ID, time), and linear in ln(K) for given val-
ues of all other explanatory variables (ln(L), ln(A), ln(V ), ID, time). However, as the
other variables vary between observations, the gradients (∂ ln f(.)/ ln ∂xj) may also vary
between observations, although the bandwidths of some explanatory variables are very
large. The estimated gradients and their variation are graphically presented in Figure A3
in Appendix D and are summarised in Table 2.

Table 2: Results of the nonparametric estimation of the mean production function
Dependent variable: ln(Y )

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 695532.8 0.085 0.188 <0.001
ln(A) 1766718.0 0.086 0.121 0.035
ln(V ) 0.699247 0.691 0.163 <0.001
ln(K) 735637.2 0.255 0.109 <0.001
year (ordered) 1.000 0.000 0.000 0.772
ID (unordered) 0.001 0.017 0.153 0.073

R2 = 0.947

According to the results of the nonparametric regression of the mean production func-
tion of the Polish dairy farms, we can conclude that intermediate inputs and capital are
the production inputs with the largest partial output elasticities, i.e. the largest relative
marginal effects on the output quantity. Labour and land have considerably lower partial
output elasticities (around 9% for each of these two inputs). The mean elasticity of scale
(the average of the sums of the partial output elasticities) is equal to 1.04 which indi-
cates that the analysed Polish dairy farms on average operate under slightly increasing
returns to scale. The bootstrap significance test proposed by Racine (1997) and Racine,
Hart and Li (2006) indicates that all (logarithmic) input quantities have a statistically
significant effect on the (logarithmic) output quantity. While the effect of the farm ID
was statistically significant at the 10% level, the effect of time was insignificant
The estimated average partial production elasticities from the model in logarithms

(Table 2) are not dissimilar to the average partial production elasticities from the model

22 Parmeter et al. (2012) proposed this as the “rule of thumb for linearity”.
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in levels (Table A1 in Appendix A). However, the individual partial output elasticities
substantially differ between the two models and they are not even correlated.
In order to obtain nonparametric estimates of the output variability function in the

second step of the analysis, we use the same regression methods that we used to estimate
the mean production function. Following Just and Pope (1978), we regress the absolute
values of the residuals of model (25)23 on the logarithms of all input variables.
The results of the nonparametric local-linear kernel regression of the output variability

function are reported in Table 3. Most cross-validated bandwidths considerably differ
from the bandwidths selected for the mean production function. The bandwidth for the
time variable is still large, but this variable is not smoothed out in this regression, which
indicates that the output variability differs between years. The bandwidth for the ID
variable is relatively small but considerably larger than in the mean production function
model. This means that the individual heterogeneity is larger for the mean output than
for the output variability. The bandwidths for ln(L), ln(A) and ln(V ) are very large,
which indicates that the output variability function is linear in ln(L), ln(A) and ln(V )
for given values of the other explanatory variables. In contrast, the output variability
function is nonlinear in ln(K), as its bandwidth is relatively small.

Table 3: Results of the nonparametric estimation of the output variability function
Dependent variable: ln |û|

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 38019.4 0.182 0.115 0.005
ln(A) 852617.4 0.207 0.094 <0.001
ln(V ) 640764.6 0.527 0.104 <0.001
ln(K) 0.533 0.237 0.120 <0.001
year (ordered) 0.759 0.009 0.029 0.010
ID (unordered) 0.077 -0.001 0.103 <0.001

R2 = 0.283

Since the marginal effects of all four (logarithmic) input quantities on the output vari-
ability are positive for almost all farms, we can conclude that all four inputs increase
output variability.24

23 We calculate the residuals of model (25) based on the estimation of model (31), where û = f̂(x, z)(1 +
exp(û∗)) are the estimated residuals of model (25), f̂(.) = exp( ̂ln f(.)) are the predicted output
quantities (in levels) based on the estimated model (31), and û∗ are the estimated residuals from
model (31).

24As shown in Table 3 and in figure A4, the estimated gradients of the output variability vary across
individuals. Therefore, the commonly used Cobb-Douglas functional form of the output variability
function would be inappropriate.
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We use the two different approaches for obtaining estimates of the risk preferences
functions that are described in section 3. In order to investigate the robustness of the
risk preference measures, we calculate not only the averaged FOC (26 – 28), but also the
FOC for individual (variable) inputs, i.e. setting J equal to one and j indicating either
land or intermediate inputs in equations (26 – 28). Furthermore, we changed the order of
the inputs in equation (28), i.e. j = 1 = intermediate inputs and j = 2 = land instead of
j = 1 = land and j = 2 = intermediate inputs.
The results of the nonparametric estimations of the risk preference functions are pre-

sented in tables A3 –A12 in Appendix B. Almost all regressors (e.g. quantities of fixed
and variable inputs and relative prices of variable inputs) in all these nonparametric re-
gression models are statistically insignificant. The values of the risk preference functions
that are directly calculated from equations (26), (27), and (28 – 30) are compared with the
values that are derived from the nonparametrically estimated risk preference functions in
Tables A13 to A15 in Appendix C
The relative risk premiums obtained from the nonparametrically estimated risk prefer-

ence functions are rather implausible. For instance, the relative risk premiums obtained
from the model that only accounts for production risk are far above the reasonable range,
while the risk premiums obtained from the model that accounts both for production risk
and output price uncertainty are negative.
Given the lack of statistical significance and the implausibility of the results obtained

from the nonparametrically estimated risk preference functions, our further analysis is
based on the values of the risk preference functions that are directly calculated from
equations (26), (27), and (28 – 30).
We found that the values of the risk preference functions, as well as the relative risk

premiums, that were obtained from the averaged FOC do not differ much from those
that were obtained from the FOCs that were separately derived for each variable input.
Therefore, we only focus on the risk preference functions that were obtained from the
averaged FOC. The median values of the corresponding relative risk premiums (RRP)
that were calculated from equations (26), (27), and (28 – 30) are presented in Table 4.

Table 4: Median values of estimated Relative Risk Premiums in the years 2004–2010
Year

2004 2005 2006 2007 2008 2009 2010 Total
RRP1 (production risk) 0.333 0.343 0.302 0.233 0.243 0.200 0.192 0.258
RRP2 (output price uncertainty) 0.006 0.006 0.006 0.005 0.005 0.006 0.005 0.005
RRP3 (production risk and
output price uncertainty) 0.030 0.091 0.176 0.160 0.191 0.232 0.112 0.150

Based on the values of the risk preferences that are derived from the model that only
incorporates production risk, we found that most dairy farms (84.6% of the farms in the
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sample) are risk averse (the median value of the θ1 is −3.17). The risk premium (RP)
which is the amount that a risk averse individual is willing to pay to insure against profit
uncertainty gives a more intuitive interpretation than the values of the risk preference
function. Because RP depends on the unit of measurement, it is more appropriate to use
the relative risk premium (RRP) which is usually defined as the ratio of the risk premium
and a value of average profit. We found that a typical25 Polish farmer who specialises
in dairy production is willing to give up around 25.7% of his or her profit26 or around
11.2% of the total revenue in order to eliminate production risk. The median values of
the estimated RRP based on equation (10) are presented in the first row of Table 4.
Next we investigated farmers’ attitudes towards risk when they only face price uncer-

tainty. We use equation (27) to calculate the risk preference function associated with
output price uncertainty. The values of θ2 are negative for 91.4% of the observations,
which indicates that most farmers are risk averse. In the model with only price uncer-
tainty, the risk for farmers results from the difference between the anticipated price and
the actually realised price. Since the researcher does not usually know the anticipated
price, we assume that farmers anticipate that the price in the following period will remain
approximately the same as in the current period, i.e. pet = pt−1. Since we postulated
pet = pt e

η, we can calculate Var(ω1) = Var(eη − 1) = Var(pt−1/pt − 1), which is 0.0107 in
our data set (corresponding to a coefficient of variation of 10.4%).27 We use equation (17)
in order to calculate the risk premiums (RP) and the corresponding relative risk premiums
(RRP). The average RRP based on our data was very close to zero (0.005 at the median)
which indicates that most farmers are not willing to pay to insure against the risk related
to uncertain output prices. The median values of the RRP for the period 2004-2010 are
presented in the second row of Table 4.
Finally, we apply the model that facilitates a joint analysis of production risk and

output price uncertainty. The risk preference function related to the production risk (θ̃1)
is negative for 59.3% of the observations, while the risk preference function related to
price uncertainty (θ̃2) is negative for 62.9% of the observations. Hence, the results from
this model confirm our previous findings that most of the analysed Polish dairy farmers
are risk averse regarding production risk and the risk related to output price uncertainty.
Assuming that eη and ε are independent and given that the variance of ε is normalised to

25 We will refer to the median values rather than to the mean values because the calculated RRP are
not evenly distributed and the calculation of mean values is affected by outliers.

26 It is important to emphasise that farmers in the EU and Poland often face negative profit if one
excludes the value of agricultural policy support (i.e. direct payments from the Common Agricultural
Policy (CAP).

27 The calculation of the output price indices is described in footnote 13. As different types of output have
different price changes, and the farms in the data set have different proportions of the different types
of output, the calculated output price indices differ between observations. We calculated Var(ω1) as
the variance over all individuals and time periods in the sample, for which lagged prices were available,
i.e. Var(ω1) = Var(pi,t−1/pit− 1), and used the same variance for all observations in the data set. We
leave the development of a more sophisticated approach for obtaining Var(ω1) for future research.
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one, we obtain Var(ω2) = Var(eηε) = Var(eη) Var(ε) = Var(eη) = Var(eη − 1) = Var(ω1)
and use equations (23) and (24) to calculate the risk premiums. The average RRP in the
period 2005-2010 was around 0.150, which indicates that a typical farmer in our sample
is willing to pay 15.0% of the profit as insurance against both production risk and output
price uncertainty. Finally, we found that the average RRP during the years 2007-2010 was
around 0.17 which means that the farmers’ willingness to pay for insurance against risk
increased from 2007. It is worth mentioning that since 2007, milk prices have tended to be
more volatile and therefore less predictable for producers. The median values of the RRP
for years 2005-2010 are shown in the third row of Table 4. The values of RRP from the
model that accounts for both production risk and output price uncertainty are on average
considerably lower than in the model that only consider production risk. However, in our
opinion, the results obtained from the model that jointly addressed production risk and
output price uncertainty are more reliable, because the models that ignore output price
uncertainty or ignore production risk might be misspecified.

6. Conclusion

We use nonparametric econometric methods for panel data to analyse production risk and
price uncertainty in the Just and Pope (1978) framework. Our analysis is based on Kumb-
hakar and Tsionas (2009) and we generalise this approach to panel data. Furthermore, we
used a more recent kernel estimator and applied significance tests in the nonparametric
estimations. Finally, we compare different specifications of the mean production function
and compare different approaches to obtaining the values of the risk preference functions.
The advantage of the nonparametric approach in the estimation of the Just and Pope

(1978) production model is that it does not impose any parametric specifications (func-
tional forms) on the mean production function and the output variability function. Fur-
thermore, no parametric assumptions are made regarding the risk preference functions
and the underlying utility function.
We use three variants of the model: a model that only accounts for production risk,

a model that only accounts for output price uncertainty, and a model that accounts for
both production risk and output price uncertainty. We apply these models to investigate
the risk and risk attitudes in Polish dairy farming based on an unbalanced panel data set
of Polish family farms that specialised in dairy production in the years 2004-2010.
We found for our data set that the nonparametric estimation of the Just and Pope

(1978) production model with an additive error structure resulted in a model that was
insignificant in all explanatory variables. Moreover, although the median values of the
estimated marginal products and partial output elasticities from this model were reason-
able, a large share of the derived measures of interest (e.g. risk premiums) had implausible
values or were infinite.
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Therefore, we estimated the mean production function in logarithms. We investigate
the (approximation) bias in the model with logarithmic regression variables (and multi-
plicative error) and concluded that the bias was small. Ultimately, the nonparametric
estimation of the mean production function with logarithmic regression variables within
the Just and Pope (1978) production model was statistically significant. Furthermore,
this model delivered plausible economic results.
We calculated the relative risk premiums (RRP) based on the farmers’ risk preference

functions. Our nonparametric estimations of the risk preference functions were insignifi-
cant in virtually all explanatory variables and most of the derived relative risk premiums
were implausible. In contrast, the values of the risk preference functions, which were
directly calculated from the FOC of the theoretical model, and the nonparametric esti-
mation results of the mean production function, and the output variability function, were
plausible.
The results of the model that only accounts for output variability (production risk)

indicate that the majority of the analysed Polish dairy farmers is risk averse. The esti-
mated farm-specific relative risk premiums indicate that on average they are willing to
pay around 25.7% of their profit (or 11.2% of the value of total revenues) to insure against
production risk.
According to the results obtained from the model that only accounts for output price

uncertainty, we observed that although the analysed farmers were risk averse, they were
on average unwilling to pay to insure against output price uncertainty in the years 2005-
2010. Our analysis revealed that, in spite of volatile milk prices, farmers’ willingness to
pay to insure against lower profit due to uncertain output prices was very low.
Finally, we estimated the model that incorporates both production risk and output price

uncertainty. The results regarding the farmers’ risk attitudes were mostly in between the
results from the models that only account for production risk or only account for output
price uncertainty. All three models consistently indicate that the analysed Polish farmers
who specialised in dairy production were risk averse. As the models that ignore output
price uncertainty or ignore production risk might be misspecified, we consider the results
of the model that accounts for both production risk and output price uncertainty as most
reliable.
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Appendix

A. Table with detailed results

Table A1: Results of the nonparametric local-linear kernel regression of the mean pro-
duction function estimated in levels

Dependent variable: Y
Regressor Bandwidth Gradients P -Value

Median Std.Dev
L 0.967 5.556 1187.834 1
A 4.114 0.359 86.820 1
V 11.009 1.541 78.670 1
K 56.496 0.099 2.452 1
year (ordered) 0.500 0.116 325.802 1
ID (unordered) 0.499 -0.003 158.483 1

Elasticities
Mean Median Std.Dev

L -0.014 0.124 13.298
A -0.379 0.078 33.155
V 0.565 0.727 10.392
K 0.215 0.232 3.341

R2 = 0.482

Table A2: Results of the nonparametric local-linear kernel regression of the output vari-
ability function related to the model estimated in levels

Dependent variable: ln |û|
Regressor Bandwidth Gradients P -Value

Median Mean Std.Dev
ln(L) 0.158 0.190 -0.286 9.510 1
ln(A) 0.193 -0.033 -0.053 24.539 1
ln(V ) 0.081 0.256 0.062 28.050 1
ln(K) 0.447 0.284 0.497 8.499 1
year (ordered) 0.430 0.016 0.040 1.287 0.005
ID (unordered) 0.514 0.010 0.003 0.230 0.010

R2 = 0.797
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B. Results of nonparametric estimation of risk preference functions

Table A3: Results of the nonparametric estimation of the risk preference function from
the model with only production risk using averaged solutions to FOC

Dependent variable: D1

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 271450.9 50.690 7.728 0.248
ln(A) 370916.2 -7.561 0.709 0.800
ln(V ) 710654.4 14.500 2.093 0.569
ln(K) 1.473022 -18.47 7.579 0.381
ln(w̃A) 74007.8 -27.28 3.897 0.466
ln(w̃V ) 199809.4 24.95 13.867 0.797
year (ordered) 1 0.000 0.000 0.712
ID (unordered) 1 0.000 0.000 0.431

R2 = 0.001

Table A4: Results of the nonparametric estimation of the risk preference function from
the model with only production risk using solutions to FOC for land

Dependent variable: D1A

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 0.001 0.000 0.000 < 0.001
ln(A) 90491.84 -576.8 32168.63 1
ln(V ) 1601302 -275.6 42500.56 1
ln(K) 0.2126243 105.4 14801.46 1
ln(w̃A) 2299712 13.8 31230.11 1
ln(w̃V ) 0.04193292 -37.49 2858.028 1
year (ordered) 0.436 3078 180034.3 1
ID (unordered) 1 0.000 0.001 1

R2 = 0.868

24 IFRO Working Paper 2013 / 6



Table A5: Results of the nonparametric estimation of the risk preference function from
the model with only production risk using solutions to FOC for intermediate inputs

Dependent variable: D1V

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 0.387 86.98 41.499 0.113
ln(A) 1523518 20.85 12.641 0.419
ln(V ) 1.133 1.770 16.542 0.549
ln(K) 520509.6 -35.44 8.117 0.211
ln(w̃A) 0.491 -7.214 21.457 0.619
ln(w̃V ) 19367.01 192.1 20.549 0.190
year (ordered) 1 1 0.000 0.323
ID (unordered) 1 0.000 0.000 0.083

R2 = 0.009

Table A6: Results of the nonparametric estimation of the risk preference function from
the model with only price uncertainty using averaged solutions to FOC

Dependent variable: D2

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 1.576 0.649 56.765 1
ln(A) 0.510 -3.326 132.023 1
ln(V ) 0.619 0.776 101.242 1
ln(K) 0.124 3.704 157.269 1
ln(w̃A) 0.008 -580.1 25141.66 1
ln(w̃V ) 0.350 591.7 22660.31 1
year (ordered) 0.887 -0.056 3.0279 1
ID (unordered) 0.807 0.005 1.5172 1

R2 = 0.792
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Table A7: Results of the nonparametric estimation of the risk preference function from
the model with only price uncertainty using solutions to FOC for land

Dependent variable: D2A

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 8.956 - - 0.905
ln(A) 0.349 - - 1
ln(V ) 0.061 - - 1
ln(K) 0.206 - - 1
ln(w̃A) 0.184 - - 0.987
ln(w̃V ) 0.047 - - 0.977
year (ordered) 1 - 0.772
ID (unordered) 1 - - 0.940

R2 = 0.000

Table A8: Results of the nonparametric estimation of the risk preference function from
the model with only price uncertainty using solutions to FOC for intermediate inputs

Dependent variable: D2V

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 4.28003 -0.074 1.073 1
ln(A) 1.777198 -0.022 0.453 1
ln(V ) 10.59916 0.144 0.586 1
ln(K) 0.4417764 -0.121 0.905 0.561
ln(w̃A) 0.279175 -0.255 9.609 1
ln(w̃V ) 0.006 -2.053 62.755 1
year (ordered) 0.3916 0.000 0.127 0.042
ID (unordered) 0.102 0.004 0.391 0.010

R2 = 0.849
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Table A9: Results of the nonparametric estimation of the risk preference function from
the model with both production risk and price uncertainty using averaged solutions to
FOC and land as a numeraire input (j = 1 = land, j = 2 = intermediate inputs)

Dependent variable: D3V A

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 814626.1 -0.015 0.273 0.035
ln(A) 0.398 -0.086 0.386 0.363
ln(V ) 627433.6 0.066 0.394 0.333
ln(K) 4820067 0.065 0.289 0.095
ln(w̃A) 0.0996 0.047 1.7646 0.241
ln(w̃V ) 535934.4 -0.122 4.235 0.110
year (ordered) 1 0.000 0.000 0.105
ID (unordered) 0.001 -0.005 0.405 0.015

R2 = 0.930

Table A10: Results of the nonparametric estimation of the risk preference function from
the model with both production risk and price uncertainty using averaged solutions to
FOC and intermediate inputs as a numeraire input (j = 1 = intermediate inputs, j = 2 =
land)

Dependent variable: D3AV

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 1.757 10.67 660.601 0.113
ln(A) 0.526 -11.96 1013.514 0.419
ln(V ) 0.731 16.10 629.061 0.549
ln(K) 0.125 30.05 1497.161 0.211
ln(w̃A) 0.008 -9040 324932.7 0.619
ln(w̃V ) 1.595 9197 308123.2 0.190
year (ordered) 0.73917 0.318 18.231 0.323
ID (unordered) 1 0.499 17.800 0.083

R2 = 0.865
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Table A11: Results of the nonparametric estimation of the risk preference function from
the model with both production risk and price uncertainty using solutions to FOC for
land

Dependent variable: D3A

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 2.695 35.000 1049.810 1
ln(A) 0.484 -15.025 393.237 1
ln(V ) 0.334 43.053 437.317 1
ln(K) 0.090 -58.150 2047.369 1
ln(w̃A) 0.105 -251.470 6574.699 0.709
ln(w̃V ) 2.635 -477.400 13853.640 0.118
year (ordered) 0.999 0.777 38.387 0.997
ID (unordered) 0.685 0.3682 42.888 0.922

R2 = 0.773

Table A12: Results of the nonparametric estimation of the risk preference function from
the model with both production risk and price uncertainty using solutions to FOC for
intermediate inputs

Dependent variable: D3V

Regressor Bandwidth Gradients P -Value
Mean Std.Dev

ln(L) 1615179 -0.040 0.520 0.085
ln(A) 1008954 -0.190 0.466 0.015
ln(V ) 0.567 0.150 0.963 0.003
ln(K) 2842631 0.065 0.549 0.155
ln(w̃A) 0.110 0.110 3.767 0.083
ln(w̃V ) 917447.2 -0.246 7.942 0.078
year (ordered) 1 0.000 0.000 0.000
ID (unordered) 0.007 -0.016 0.723 0.033

R2 = 0.923
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C. Comparison of calculated and estimated values of risk preferences and relative
risk premiums

Table A13: Median values of risk preference functions and relative risk premiums for
Model 1 using calculated and estimated RPF

T RRP1 RRP1rev

Calculated
A -2.87 0.243 0.104
V -3.24 0.256 0.114
D1 -3.17 0.258 0.112

Estimated A -836 74.2 31.3
V -22.20 1.747 0.793
D1 -26.870 2.086 0.980

Note:
Calculated - refers to values obtained from risk preference functions derived from economic
model,
Estimated - refers to values obtained from nonparametric estimation of risk preference functions.
A,V indicates the input used to solve FOC (land or intermediate inputs) RRP1 - relative risk
premium for model with production risk only = risk premium/restricted profit
RRP1rev - relative risk premium (II) for model with production risk only = risk premium/rev-
enue.

Table A14: Median values of risk preference functions and relative risk premiums for
Model 2 using calculated and estimated RPF

T RRP2 RRP2rev

Calculated
A -0.845 0.009 0.004
V -0.239 0.003 0.001
D2 -0.508 0.005 0.002

Estimated
A -1.000 0.000 0.002
V -0.199 0.002 0.001
D2 -0.498 0.005 0.002

Note:
RRP2 - relative risk premium for model with price uncertanity only = risk premium/restricted
profit
RRP2rev -relative risk premium (II) for model with price uncertanity only = risk premium/rev-
enue.
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Table A15: Median values of risk preference functions and relative risk premiums for
Model 3 using calculated and estimated risk preferences functions

T T2 RRP3 RRP3rev

Calculated
VA -1 -13 0.150 0.064
AV -1 -13 0.150 0.064
V -1.390 -16.50 0.190 0.081
A -1.10 -13.00 0.150 0.064

Estimated
VA -3.200 -40 0.480 0.200
AV 0.600 7.00 -0.070 -0.040
V -3.27 -40.50 0.500 0.207
A 0.420 5 -0.06 -0.026

Note: AV, (VA) - indicates that land (intermediate inputs) variable is used as a numereire input
RRP3 - relative risk premium for model with both production risk and output price uncertanity
= risk premium/restricted profit
RRP3rev - relative risk premium (II) for model with both production risk and output price
uncertanity = risk premium/revenue.
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D. Figures with detailed results
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Figure A1: Scatter plot of u∗ and exp(u∗)− 1
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Figure A2: Histograms of exp(u∗) − 1 (A2a), u∗ (A2a), the difference u∗ − (exp(u∗) −
1) (A2c), and the difference u∗ − (exp(u∗)− 1) for the interval [−0.05, 0] (A2d).
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Figure A3: Partial output elasticities of the mean production function (f(x, z)) for the
model in logarithms.
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Figure A4: Partial output elasticities of the output variability function (h(x, z)) for the
model in logarithms.
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Figure A5: Partial output elasticities of the mean production function (f(x, z)) for the
model in levels.
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Figure A6: Partial output elasticities of the output variability function (h(x, z)) for the
model in levels.
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Figure A7: Histograms of Risk Preference functions from the model in logarithms.
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Figure A8: Histograms of Risk Preference functions from the model in levels.
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Figure A9: Histograms of Risk Preference functions from the model in logarithms.
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Figure A10: Histograms of Relative Risk Premiums from the model with price uncertenity
in the years 2005-2010 from the model in logarithms.
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Figure A11: Histograms of Relative Risk Premiums from the model with price uncertenity
in the years 2005-2010 from the model in levels.
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Figure A12: Histograms of Relative Risk Premiums from the model with production
variability and price uncertainty in the years 2005-2010 from the model in logarithms.
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Figure A13: Histograms of Relative Risk Premiums from the model with production risk
and price uncertainty in the years 2005-2010 from the model in levels.
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E. R code

E.1. Estimation in levels

##Nonparametric estimation of the mean production function of the Just and Pope
##technology in levels of regression variables
##
##Cross-validation bandwidth selection
bw.f <- npregbw( Y ~ L + A + V + K + T_of + ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data = PLF_TF56 )

##Estimation of the nonparametric model
model.np.f <- npreg( bws = bw.f,

data = PLF_TF56,
gradients = TRUE,
residuals = TRUE )

summary( model.np.f )
##Bootstrap significance test
sigtest.model.np.f <- npsigtest( model.np.f, boot.num = 399 )
summary( sigtest.model.np.f )

##Nonparametric estimation of the risk variance function of the Just and Pope
##technology (mean production function estimated in levels, risk variance
##function estimated in logarithms)

##Calculate dependent variable
PLF_TF56$Absu <- abs(model.np.f$resid)
PLF_TF56$lAbsu <- log(PLF_TF56$Absu)

##Cross-validation bandwidth selection
bw.g <- npregbw( lAbsu ~ lL + lA + lV + lK + T_of + ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data = PLF_TF56 )

##Estimation of the nonparametric model
model.np.g <- npreg( bws = bw.g,

data = PLF_TF56,
gradients = TRUE,
residuals = TRUE )

summary( model.np.g )
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##Bootstrap significance test
sigtest.model.np.g <- npsigtest( model.np.g, boot.num = 399 )
summary( sigtest.model.np.g )

##Nonparametric estimation of the risk preference function (phi) for Model 3
##Calculate D3
PLF_TF56$D3 <- (0.5* ((model.np.f$grad[,3] / model.np.f$grad[,3]) +

(model.np.f$grad[,2] / model.np.f$grad[,3]))
##Cross-validation bandwidth selection
bw.D3 <- npregbw( D3 ~ lL + lA + lV + lK + lAwp + lVwp + T_of + ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data = PLF_TF56),

##Estimation of the nonparametric model
model.np.D3 <- npreg( bws = bw.D3,

data = PLF_TF56,
gradients = TRUE,
residuals = TRUE )

summary( model.np.D3 )
sigtest.model.np.D3 <- npsigtest( model.np.D3, boot.num = 399 )
##Bootstrap significance test
summary( sigtest.model.np.D3 )

##Estimation of risk preference functions and relative risk premiums for
##Models 1-3
#calculate marginal products of the mean production function of the
#Just and Pope technology
PLF_TF56$fL <- model.np.f$grad[,1]
PLF_TF56$fA <- model.np.f$grad[,2]
PLF_TF56$fV <- model.np.f$grad[,3]
PLF_TF56$fK <- model.np.f$grad[,4]
PLF_TF56$fHat <- fitted(model.np.f)
#calculate marginal effects of the risk function
#of the Just and Pope technology
PLF_TF56$gL <- model.np.g$grad[,1] * ((exp(PLF_TF56$lAbsu)) / PLF_TF56$L)
PLF_TF56$gA <- model.np.g$grad[,2] * ((exp(PLF_TF56$lAbsu)) / PLF_TF56$A)
PLF_TF56$gV <- model.np.g$grad[,3] * ((exp(PLF_TF56$lAbsu)) / PLF_TF56$V)
PLF_TF56$gK <- model.np.g$grad[,4] * ((exp(PLF_TF56$lAbsu)) / PLF_TF56$K)
PLF_TF56$gHat <- exp(fitted(model.np.g))
summary(PLF_TF56$gA)
summary(PLF_TF56$gK)
PLF_TF56$resid.model.np.f <- resid(model.np.f)
#calculate elasticities of the mean production function
#of the Just and Pope technology
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PLF_TF56$fL_ela <- model.np.f$grad[,1] / (PLF_TF56$YQ / PLF_TF56$L)
PLF_TF56$fA_ela <- model.np.f$grad[,2] / (PLF_TF56$YQ / PLF_TF56$A)
PLF_TF56$fV_ela <- model.np.f$grad[,3] / (PLF_TF56$YQ / PLF_TF56$V)
PLF_TF56$fK_ela <- model.np.f$grad[,4] / (PLF_TF56$YQ / PLF_TF56$K)
#calculate elasticities of the risk function
#of the Just and Pope technology
PLF_TF56$gL_ela <- model.np.g$grad[,1]
PLF_TF56$gA_ela <- model.np.g$grad[,2]
PLF_TF56$gV_ela <- model.np.g$grad[,3]
PLF_TF56$gK_ela <- model.np.g$grad[,4]
#Drop observations with marginal effects of mean production function and risk
#variance function equal to zero
PLF_TF56 <- subset(PLF_TF56,

PLF_TF56$gA != 0 &
PLF_TF56$gV != 0 &
PLF_TF56$fA != 0 &
PLF_TF56$fV != 0 )

#normalise prices of variable inputs (A, L)
PLF_TF56$Awp <- PLF_TF56$Aw / PLF_TF56$Y_P
PLF_TF56$Vwp <- PLF_TF56$Vw / PLF_TF56$Y_P
#################### MODEL1 1 (only production risk) ##########################
#calculate risk preference function Theta1 (D1) for Model 1
PLF_TF56$d1.2 <- (PLF_TF56$fA - PLF_TF56$Awp) / ( - PLF_TF56$gA)
PLF_TF56$d1.3 <- (PLF_TF56$fV - PLF_TF56$Vwp) / ( - PLF_TF56$gV)
PLF_TF56$D1 <- 0.5 * (PLF_TF56$d1.2 + PLF_TF56$d1.3)
#calculate RP for Model 1
PLF_TF56$RP1 <- -0.5 * PLF_TF56$D1 * fitted(model.np.g)
summary(PLF_TF56$RP1)
#calculate RP for Model 1
PLF_TF56$RRP1 <- PLF_TF56$RP1 / (PLF_TF56$Y_P * PLF_TF56$YQ-

(PLF_TF56$Aw * PLF_TF56$A + PLF_TF56$Vw * PLF_TF56$V))
summary(PLF_TF56$RRP1)
#calculate "modified" RRP (RP1 / total revenue) for Model 1
PLF_TF56$RRP1_revenue <- PLF_TF56$RP1 / (PLF_TF56$Y_P * PLF_TF56$YQ)
summary(PLF_TF56$RRP11)

################## MODEL 2 (only output price uncertainty) ####################
#calculate eta
library(plm)
PLF_TF56pd <- pdata.frame(PLF_TF56, c("ID","T"), drop = FALSE)
PLF_TF56pd$y_p <- PLF_TF56pd$Y_P
PLF_TF56pd$y_p_lag <- lag(PLF_TF56pd$y_p, 1)
PLF_TF56pd$eta <- log(PLF_TF56pd$y_p_lag / PLF_TF56pd$y_p)
PLF_TF56$eta <- as.vector(PLF_TF56pd$eta)
#calculate variances of omega1 and omega2
PLF_TF56$omega1 <- var((exp(PLF_TF56$eta) - 1), na.rm = TRUE)
PLF_TF56$omega2 <- PLF_TF56$omega1
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#calculate risk preference function Theta2 (D2) for Model 2
PLF_TF56$d2.2 <- (PLF_TF56$Awp / PLF_TF56$fA) - 1
PLF_TF56$d2.3 <- (PLF_TF56$Vwp / PLF_TF56$fV) - 1
PLF_TF56$D2 <- 0.5 * (PLF_TF56$d2.2 + PLF_TF56$d2.3)
summary(PLF_TF56$D2)
#calculate RP for Model 2
PLF_TF56$RP2 <- -0.5 * PLF_TF56$D2 * fitted(model.np.f) * PLF_TF56$omega1
#calculate RP for Model 2
PLF_TF56$RRP2 <- PLF_TF56$RP2 / (PLF_TF56$Y_P * PLF_TF56$YQ-

(PLF_TF56$Aw * PLF_TF56$A + PLF_TF56$Vw * PLF_TF56$V))
summary(PLF_TF56$RRP2)
#calculate "modified" RRP (RP2 / total revenue) for Model 2
PLF_TF56$RRP22 <- PLF_TF56$RP2 / (PLF_TF56$Y_P * PLF_TF56$YQ)
summary(PLF_TF56$RRP22)

######## MODEL 3 (both production risk and output price uncertainty) #########
#Calculate risk preference functions Theta1 (D3_T1.1) and Theta2 (D3_T1.1)
#for Model 3
PLF_TF56$D3_T1.1 <- (PLF_TF56$Awp - fitted(model.np.D3) * PLF_TF56$Vwp) /

(PLF_TF56$gA - fitted(model.np.D3) * PLF_TF56$gV)
PLF_TF56$D3_T2.1 <- ((PLF_TF56$Awp - PLF_TF56$gA * PLF_TF56$D3_T1.1) /

(PLF_TF56$fA)) - 1
#calculate RP for Model 3
PLF_TF56$RP3 <- -0.5 * (PLF_TF56$D3_T1.1 / fitted(model.np.g)) *

((fitted(model.np.f)^2) * PLF_TF56$omega1 +
(fitted(model.np.g)^2) * PLF_TF56$omega2)

#calculate RP for Model 3
PLF_TF56$RRP3 <- PLF_TF56$RP3 / (PLF_TF56$Y_P * PLF_TF56$YQ -

(PLF_TF56$Aw * PLF_TF56$A + PLF_TF56$Vw * PLF_TF56$V))
summary(PLF_TF56$RRP3)
#calculate "modified" RRP (RP3 / total revenue) for Model 3
PLF_TF56$RRP31 <- PLF_TF56$RP3 / (PLF_TF56$Y_P * PLF_TF56$YQ)
summary(PLF_TF56$RRP31)

47 IFRO Working Paper 2013 / 6



E.2. Estimation in logs

##Nonparametric estimation of the mean production function of the Just and Pope
##technology in logarithms of regression variables
##Cross-validation bandwidth selection
bw.f.log <- npregbw(lY ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data = PLF_TF56)

##Estimation of the nonparametric model
model.np.f.log <- npreg(bws = bw.f.log,

data = PLF_TF56,
gradients = TRUE,
residuals = TRUE)

summary(model.np.f.log)
##Bootstrap significance test
sigtest.model.np.f.log <- npsigtest(model.np.f.log, boot.num = 399)
summary(sigtest.model.np.f.log)

##Nonparametric estimation of the risk variance function of the Just and Pope
##technology in logarithms of regression variables
##Calculate dependent variable
PLF_TF56$lAbsu <- log(abs((exp(model.np.f.log$resid) - 1)*

exp(fitted(model.np.f.log))))
##Cross-validation bandwidth selection
bw.g.log <- npregbw(lAbsu ~ lL + lA + lV + lK + T_of +ID,

regtype = "ll",
bwmethod = "cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data = PLF_TF56)

##Estimation of the nonparametric model
model.np.g.log <- npreg(bws = bw.g.log,

data = PLF_TF56,
gradients = TRUE,
residuals = TRUE)

summary(model.np.g.log)
##Bootstrap significance test
sigtest.model.np.g.log <- npsigtest(model.np.g.log, boot.num = 399)
summary(sigtest.model.np.g.log)
##Nonparametric estimation of the risk preference functions
##Model 1
################################################################################

48 IFRO Working Paper 2013 / 6



##
##Nonparametric estimation of the risk preference functions
##using avaraged sollutions to F.O.C.
PLF_TF56$d1.2 <-(PLF_TF56$fA-PLF_TF56$Awp)/(-PLF_TF56$gA)
PLF_TF56$d1.3 <-(PLF_TF56$fV-PLF_TF56$Vwp)/(-PLF_TF56$gV)
calculate risk preference function Theta1 (D1) for Model 1
PLF_TF56$D1 <- 0.5*(PLF_TF56$d1.2+PLF_TF56$d1.3)

bw.D1.log <- npregbw(D1 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

model.np.D1.log <- npreg(bws=bw.D1.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

sigtest.model.np.D1.log <- npsigtest(model.np.D1.log,
boot.num=399)

sigtest.model.np.D1.log
###
##Nonparametric estimation of the risk preference functions
using sollution to F.O.C. with respect to land variable (A)
bw.d1.2.log <- npregbw(d1.2 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,

regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

model.np.d1.2.log <- npreg(bws=bw.d1.2.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

sigtest.model.np.d1.2.log <- npsigtest(model.np.d1.2.log,
boot.num=399)

bw.d1.3.log <- npregbw(d1.3 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)
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model.np.d1.3.log <- npreg(bws=bw.d1.3.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

sigtest.model.np.d1.3.log <- npsigtest(model.np.d1.3.log,
boot.num=399)

sigtest.model.np.d1.3.log
##Model 2
##Nonparametric estimation of the risk preference functions
##using avaraged sollutions to F.O.C.
PLF_TF56$d2.2 <- (PLF_TF56$Awp/PLF_TF56$fA)-1
PLF_TF56$d2.3 <- (PLF_TF56$Vwp/PLF_TF56$fV)-1
#calculate risk preference function Theta2 (D2) for Model 2
PLF_TF56$D2 <- 0.5*(PLF_TF56$d2.2+PLF_TF56$d2.3)

bw.D2.log <- npregbw(D2 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

bw.D2.log
model.np.D2.log <- npreg(bws=bw.D2.log,

data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

model.np.D2.log
sigtest.model.np.D2.log <- npsigtest(model.np.D2.log,

boot.num=399)
sigtest.model.np.D2.log
##
##Nonparametric estimation of the risk preference functions
##using sollution to F.O.C. with respect to land variable (A)
bw.d2.2.log <- npregbw(d2.2 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,

regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

model.np.d2.2.log <- npreg(bws=bw.d2.2.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)
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sigtest.model.np.d2.2.log <- npsigtest(model.np.d2.2.log,
boot.num=399)

##Nonparametric estimation of the risk preference functions
##using sollution to F.O.C. with respect to variable inputs variable (V)
bw.d2.3.log <- npregbw(d2.3 ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,

regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

model.np.d2.3.log <- npreg(bws=bw.d2.3.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

sigtest.model.np.d2.3.log <- npsigtest(model.np.d2.3.log,
boot.num=399)

sigtest.model.np.d1.3.log

##Nonparametric estimation of the risk preference functions
##using avaraged sollutions to F.O.C. with V as a numeraire (D3_VA)
PLF_TF56$D3_VA <- 0.5* ((model.np.f.log$grad[,3]*(PLF_TF56$YQ/PLF_TF56$V))/

(model.np.f.log$grad[,3]*(PLF_TF56$YQ/PLF_TF56$V))+
(model.np.f.log$grad[,2]*(PLF_TF56$YQ/PLF_TF56$A))/
(model.np.f.log$grad[,3]*(PLF_TF56$YQ/PLF_TF56$V))

bw.D3_VA.log <- npregbw(D3_VA ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

bw.D3_VA.log
model.np.D3_VA.log <- npreg(bws=bw.D3_VA.log,

data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

model.np.D3_VA.log
sigtest.model.np.D3_VA.log <- npsigtest(model.np.D3_VA.log,

boot.num=399)
sigtest.model.np.D3_VA.log
##using avaraged sollutions to F.O.C. with A as a numeraire (D3_AV)
PLF_TF56$D3_AV <- 0.5* ((model.np.f.log$grad[,2]*(PLF_TF56$YQ/PLF_TF56$A))/

(model.np.f.log$grad[,2]*(PLF_TF56$YQ/PLF_TF56$A))+
(model.np.f.log$grad[,3]*(PLF_TF56$YQ/PLF_TF56$V))/
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(model.np.f.log$grad[,2]*(PLF_TF56$YQ/PLF_TF56$A)))

bw.D3_AV.log <- npregbw(D3_AV ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

bw.D3_AV.log
model.np.D3_AV.log <- npreg(bws=bw.D3_AV.log,

data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

model.np.D3_AV.log
sigtest.model.np.D3_AV.log <- npsigtest(model.np.D3_AV.log,

boot.num=399)
sigtest.model.np.D3_AV.log
##
##Nonparametric estimation of the risk preference functions
##using sollution to F.O.C. with respect to variable inputs variable (V)
PLF_TF56$D3_V <-(model.np.f.log$grad[,2]*(PLF_TF56$YQ/PLF_TF56$A))/

(model.np.f.log$grad[,3]*(PLF_TF56$YQ/PLF_TF56$V))

bw.D3_V.log <- npregbw(D3_V ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

bw.D3_V.log
model.np.D3_V.log <- npreg(bws=bw.D3_V.log,

data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

model.np.D3_V.log
sigtest.model.np.D3_V.log <- npsigtest(model.np.D3_V.log,

boot.num=399)
sigtest.model.np.D3_V.log
##
##Nonparametric estimation of the risk preference functions
##using sollution to F.O.C. with respect to land variable (A)
PLF_TF56$D3_A <- (model.np.f.log$grad[,3]*(PLF_TF56$YQ/ PLF_TF56$V))/

(model.np.f.log$grad[,2]*(PLF_TF56$YQ/ PLF_TF56$A))

bw.D3_A.log <- npregbw(D3_A ~ lL + lA + lV + lK + lAwp + lVwp +T_of +ID,
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regtype="ll",
bwmethod="cv.aic",
ckertype = "epanechnikov",
ukertype = "liracine",
okertype = "liracine",
data=PLF_TF56)

model.np.D3_A.log <- npreg(bws=bw.D3_A.log,
data=PLF_TF56,
gradients = TRUE,
residuals = TRUE)

sigtest.model.np.D3_A.log <- npsigtest(model.np.D3_A.log,
boot.num=399)

sigtest.model.np.D3_VA.log <- npsigtest(model.np.D3_VA.log,
boot.num=399)

##
## "Calculated" risk preferences and relative risk premiums
## for MODEL 1 (only production risk)
#risk preference function Theta1 (D1) for Model 1
PLF_TF56$d1.2 <-(PLF_TF56$fA-PLF_TF56$Awp)/(-PLF_TF56$gA)
summary(PLF_TF56$d1.2)
PLF_TF56$d1.3 <-(PLF_TF56$fV-PLF_TF56$Vwp)/(-PLF_TF56$gV)
summary(PLF_TF56$d1.3)
PLF_TF56$D1 <- 0.5*(PLF_TF56$d1.2+PLF_TF56$d1.3)
summary(PLF_TF56$D1)
length(PLF_TF56$D1[PLF_TF56$D1<0])/length(PLF_TF56$D1)
#RP for the model with only production risk
PLF_TF56$RP1 <- -0.5*PLF_TF56$D1*(exp(fitted(model.np.g.log)))
summary(PLF_TF56$RP1)
#RRP for the model with only production risk
PLF_TF56$RRP1 <- PLF_TF56$RP1/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP1)
#RRP for the model with only production risk (RP1/total revenue)
PLF_TF56$RRP1_rev <- PLF_TF56$RP1/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP11)

#RP for the model with only production risk
#based on the F.O.C solved for A
PLF_TF56$RP1_d1.2 <- -0.5*PLF_TF56$d1.2*(exp(fitted(model.np.g.log)))
summary(PLF_TF56$RP1_d1.2)
#cRRP for the model with only production risk
#based on the F.O.C solved for A
PLF_TF56$RRP1_d1.2 <- PLF_TF56$RP1_d1.2/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP1_d1.2)

53 IFRO Working Paper 2013 / 6



#RRP for the model with only production risk (RP1/total revenue)
#based on the F.O.C solved for A
PLF_TF56$RRP1_rev_d1.2 <- PLF_TF56$RP1_d1.2/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP1_rev_d1.2)

#RP for the model with only production risk
#based on the F.O.C solved for V
PLF_TF56$RP1_d1.3 <- -0.5*PLF_TF56$d1.3*(exp(fitted(model.np.g.log)))
summary(PLF_TF56$RP1_d1.3)
#RRP for the model with only production risk
#based on the F.O.C solved for V
PLF_TF56$RRP1_d1.3 <- PLF_TF56$RP1_d1.3/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP1_d1.3)
#RRP for the model with only production risk (RP1/total revenue)
#based on the F.O.C solved for V
PLF_TF56$RRP1_rev_d1.3 <- PLF_TF56$RP1_d1.3/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP1_rev_d1.3)
##
## "Estimated" risk preferences and relative risk premiums
## for MODEL 1 (only production risk)

#RP for the model with only production risk
#using the estimated nonparametric risk preferences
#(avaraged for 2 variable inputs: A,V)
# all.equal(PLF_TF56$D1 , fitted(model.np.D1.log)+resid(model.np.D1.log),
# check.attributes = FALSE)
summary(fitted(model.np.D1.log))
PLF_TF56$RP1_est <- -0.5*fitted(model.np.D1.log)*(exp(fitted(model.np.g.log)))
summary(PLF_TF56$RP1_est)
#RRP for the model with only production risk
PLF_TF56$RRP1_est <- PLF_TF56$RP1_est/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP1_est)
#RRP for the model with only production risk (RP1/total revenue)
PLF_TF56$RRP1_rev_est <- PLF_TF56$RP1_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP1_rev_est)
#RP for the model with only production risk
#using the estimated nonparametric risk preferences (only A)
all.equal(PLF_TF56$d1.2 , fitted(model.np.d1.2.log)+resid(model.np.d1.2.log),
check.attributes = FALSE)
summary(PLF_TF56$d1.2)
summary(fitted(model.np.d1.2.log))
#RP for the model with only production risk
PLF_TF56$RP1_d1.2_est <- -0.5*fitted(model.np.d1.2.log)*(exp(fitted(model.np.g.log)))
summary(PLF_TF56$RP1_d1.2_est)
#RRP for the model with only production risk

54 IFRO Working Paper 2013 / 6



PLF_TF56$RRP1_d1.2_est <- PLF_TF56$RP1_d1.2_est/(PLF_TF56$Y_P*PLF_TF56$YQ-
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP1_d1.2_est)
#RRP for the model with only production risk (RP1/total revenue)
PLF_TF56$RRP1_rev_d1.2_est <- PLF_TF56$RP1_d1.2_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP1_rev_d1.2_est)
#RP for the model with only production risk
#using the estimated nonparametric risk preferences (only V)
all.equal(PLF_TF56$d1.3 , fitted(model.np.d1.3.log)+resid(model.np.d1.3.log),
check.attributes = FALSE)
#RP for the model with only production risk
PLF_TF56$RP1_d1.3_est <- -0.5*fitted(model.np.d1.3.log)*(exp(fitted(model.np.g.log)))
summary(fitted(model.np.d1.3.log))
summary(PLF_TF56$RP1_d1.3_est)
#calculate RRP for the model with only production risk
PLF_TF56$RRP1_d1.3_est <- PLF_TF56$RP1_d1.3_est/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP1_d1.3_est)
#calculate RRP for the model with only production risk (RP1/total revenue)
PLF_TF56$RRP1_rev_d1.3_est <- PLF_TF56$RP1_d1.3_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP1_rev_d1.3_est)
##
## "Calculated" risk preferences and relative risk premiums
## for MODEL 2 (only output price uncertainty)
#calculate eta
library(plm)
PLF_TF56pd <- pdata.frame(PLF_TF56, c("ID","T"), drop = FALSE)
PLF_TF56pd$y_p <- PLF_TF56pd$Y_P
PLF_TF56pd$y_p_lag <- lag(PLF_TF56pd$y_p, 1)
PLF_TF56pd$eta <- log(PLF_TF56pd$y_p_lag/PLF_TF56pd$y_p)
PLF_TF56$eta <- as.vector(PLF_TF56pd$eta)
#calculate variances of omega1 and omega2
PLF_TF56$omega1 <- var((exp(PLF_TF56$eta)-1), na.rm=TRUE)
PLF_TF56$omega2 <-PLF_TF56$omega1
# #calculate risk preference function Theta2 (D2) for Model 2
# PLF_TF56$d2.2 <- (PLF_TF56$Awp/PLF_TF56$fA)-1
# PLF_TF56$d2.3 <- (PLF_TF56$Vwp/PLF_TF56$fV)-1
# PLF_TF56$D2 <- 0.5*(PLF_TF56$d2.2+PLF_TF56$d2.3)
summary(PLF_TF56$D2)
#RP for the Model 2
PLF_TF56$RP2 <- -0.5*PLF_TF56$D2*exp(fitted(model.np.f.log))*PLF_TF56$omega1
#RRP2 for the Model 2
PLF_TF56$RRP2 <- PLF_TF56$RP2/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2)
#"modified" RRP2 (RP2/total revenue) for Model 2
PLF_TF56$RRP2_rev <- PLF_TF56$RP2/(PLF_TF56$Y_P*PLF_TF56$YQ)
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summary(PLF_TF56$RRP2_rev)

all.equal(PLF_TF56$d2.2 , fitted(model.np.d2.2.log)+resid(model.np.d2.2.log),
check.attributes = FALSE, tol=0.001)
#RP for for Model 2
#using the estimated nonparametric risk preferences (only A)
summary(fitted(model.np.d2.2.log))
PLF_TF56$RP2_d2.2 <- -0.5*PLF_TF56$d2.2*exp(fitted(model.np.f.log))*PLF_TF56$omega1
#RRP2 for the Model 2
PLF_TF56$RRP2_d2.2 <- PLF_TF56$RP2_d2.2/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2_d2.2)
#calculate "modified" RRP2 (RP2/total revenue) for Model 3
PLF_TF56$RRRP2_d2.2_rev <- PLF_TF56$RP2_d2.2/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP22)

#RP for for Model 2
#using the estimated nonparametric risk preferences (only V)
PLF_TF56$RP2_d2.3 <- -0.5*PLF_TF56$d2.3*exp(fitted(model.np.f.log))*PLF_TF56$omega1
#RRP2 for the Model 2
PLF_TF56$RRP2_d2.3 <- PLF_TF56$RP2_d2.3/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2_d2.3)
#calculate "modified" RRP2 (RP2/total revenue) for Model 3
PLF_TF56$RRP2_d2.3_rev <- PLF_TF56$RP2_d2.3/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP2_d2.3_rev)

## "Estimated" risk preferences and relative risk premiums
## MODEL 2 (only output price uncertainty)
#RP for the Model 2
PLF_TF56$RP2_est <- -0.5*fitted(model.np.D2.log)*exp(fitted(model.np.f.log))*

PLF_TF56$omega1
summary(fitted(model.np.D2.log))
#RRP2 for the Model 2
PLF_TF56$RRP2_est <- PLF_TF56$RP2_est/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2_est)
#calculate "modified" RRP2 (RP2/total revenue) for Model 3
PLF_TF56$RRP2_rev_est <- PLF_TF56$RP2_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP2_rev_est)

#RP for for Model 2
#using the estimated nonparametric risk preferences (only A)
all.equal(PLF_TF56$d2.2, fitted(model.np.d2.2.log)+resid(model.np.d2.2.log),
check.attributes = FALSE)
summary(fitted(model.np.d2.2.log))
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#RP for the Model 2
PLF_TF56$RP2_d2.2 <- -0.5*fitted(model.np.d2.2.log)*exp(fitted(model.np.f.log))*

PLF_TF56$omega1
summary(PLF_TF56$RP2_d2.2)
#RRP2 for the Model 2
PLF_TF56$RRP2_d2.2 <- PLF_TF56$RP2_d2.2/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2_d2.2)
#calculate "modified" RRP2 (RP2/total revenue) for Model 2
PLF_TF56$RRRP2_d2.2_rev <- PLF_TF56$RP2_d2.2/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP22)

#RP for for Model 2
#using the estimated nonparametric risk preferences (only V)
all.equal(PLF_TF56$d2.3, fitted(model.np.d2.3.log)+resid(model.np.d2.3.log),
check.attributes = FALSE)
#RP for the Model 2
summary(fitted(model.np.d2.3.log))
PLF_TF56$RP2_d2.3_est <- -0.5*fitted(model.np.d2.3.log)*

exp(fitted(model.np.f.log))*PLF_TF56$omega1
#RRP2 for the Model 2
PLF_TF56$RRP2_d2.3_est <- PLF_TF56$RP2_d2.3_est/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP2_d2.3_est)
#calculate "modified" RRP2 (RP2/total revenue) for Model 3
PLF_TF56$RRP2_d2.3_rev_est <- PLF_TF56$RP2_d2.3_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP2_d2.3_rev_est)

## "Calculated" risk preferences and relative risk premiums
## for MODEL 3 (both production risk and output price uncertainty)
##
## using avaraged sollutions to F.O.C. with V as a numeraire (D3_VA)
#Calculate risk preference functions Theta1 (D3_T1.1) and Theta2 (D3_T1.1)
#for Model 3

PLF_TF56$D3_T1_VA <-((PLF_TF56$Awp - PLF_TF56$D3_VA*PLF_TF56$Vwp)
+ (PLF_TF56$Vwp - PLF_TF56$D3_VA*PLF_TF56$Vwp))/
((PLF_TF56$gA - PLF_TF56$D3_VA*PLF_TF56$gV)

+ (PLF_TF56$gV - PLF_TF56$D3_VA*PLF_TF56$gV))
summary(PLF_TF56$D3_T1_VA)

length(PLF_TF56$D3_T1_VA[PLF_TF56$D3_T1_VA<0])/length(PLF_TF56$D3_T1_VA)

PLF_TF56$D3_T2_VA <- ((PLF_TF56$Awp-PLF_TF56$gA*PLF_TF56$D3_T1_VA+PLF_TF56$Vwp-
PLF_TF56$gV*PLF_TF56$D3_T1_VA)/
(PLF_TF56$fA+PLF_TF56$fV))-1
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summary(PLF_TF56$D3_T2_VA)
length(PLF_TF56$D3_T2_VA[PLF_TF56$D3_T2_VA<0])/length(PLF_TF56$D3_T2_VA)

PLF_TF56$RP3_VA <- -0.5*(PLF_TF56$D3_T1_VA/exp(fitted(model.np.g.log)))*
(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1)+

((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))
summary(PLF_TF56$RP3_VA)

PLF_TF56$RRP3_VA <- PLF_TF56$RP3_VA/(PLF_TF56$Y_P*PLF_TF56$YQ-
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_VA)

summary(PLF_TF56$RRP3_VA[PLF_TF56$T==6])

#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_rev_VA <- PLF_TF56$RP3_VA/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_rev_VA)

##
##using avaraged sollutions to F.O.C. with A as a numeraire (D3_AV)

PLF_TF56$D3_T1_AV <-((PLF_TF56$Vwp - PLF_TF56$D3_AV*PLF_TF56$Awp)
+ (PLF_TF56$Awp - PLF_TF56$D3_AV*PLF_TF56$Awp))/
((PLF_TF56$gV - PLF_TF56$D3_AV*PLF_TF56$gA)

+ (PLF_TF56$gA - PLF_TF56$D3_AV*PLF_TF56$gA))
summary(PLF_TF56$D3_T1_AV)

PLF_TF56$D3_T2_AV <-PLF_TF56$D3_T1_AV*(exp(fitted(model.np.f.log))/
exp(fitted(model.np.g.log)))

PLF_TF56$RP3_AV <- -0.5*(PLF_TF56$D3_T1_AV/exp(fitted(model.np.g.log)))*
(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1)+

((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))
summary(PLF_TF56$RP3_AV)

PLF_TF56$RRP3_1_AV <- PLF_TF56$RP3_AV/(PLF_TF56$Y_P*PLF_TF56$YQ-
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_1_AV)

#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_rev_1_AV <- PLF_TF56$RP3_AV/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_rev_1_AV)

##using sollution to F.O.C. with respect to variable inputs (V)
PLF_TF56$D3_T1_V_calc <- (PLF_TF56$Awp - PLF_TF56$D3_V*PLF_TF56$Vwp)/

(PLF_TF56$gA - PLF_TF56$D3_V*PLF_TF56$gA)
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summary(PLF_TF56$D3_T1_V_calc)

PLF_TF56$D3_T2_V_calc <-PLF_TF56$D3_T1_V_calc*(exp(fitted(model.np.f.log))/
exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_V_calc)

PLF_TF56$RP3_V_calc <- -0.5*(PLF_TF56$D3_T1_V_calc/exp(fitted(model.np.g.log)))*
(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1) +

((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))
summary(PLF_TF56$RP3_V_calc)

# #calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_V_calc <- PLF_TF56$RP3_V_calc/(PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP3_V_calc)

PLF_TF56$RRP3_V_rev_calc <- PLF_TF56$RP3_V_calc/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_V_rev_calc)

##using sollution to F.O.C. with respect to land (A)
PLF_TF56$D3_T1_A_calc <-((PLF_TF56$Vwp - PLF_TF56$D3_A*PLF_TF56$Awp)/

(PLF_TF56$gV - PLF_TF56$D3_A*PLF_TF56$gV))
summary(PLF_TF56$D3_T1_A_calc)

PLF_TF56$D3_T2_A_calc <-PLF_TF56$D3_T1_A_calc*(exp(fitted(model.np.f.log))/
exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_A_calc)

PLF_TF56$RP3_A_calc <- -0.5*(PLF_TF56$D3_T1_A_calc/exp(fitted(model.np.g.log)))*
(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1) +

((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))
summary(PLF_TF56$RP3_A_calc)

PLF_TF56$RRP3_A_calc <- PLF_TF56$RP3_A_calc/ (PLF_TF56$Y_P*PLF_TF56$YQ -
(PLF_TF56$Aw*PLF_TF56$A + PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_A_calc)
# #calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_A_rev_calc <- PLF_TF56$RP3_A_calc/ (PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_A_rev_calc)

### "Estimated" risk preferences and relative risk premiums
### for MODEL 3 (both production risk and output price uncertainty)
## using avaraged sollutions to F.O.C. with V as a numeraire (D3_VA)
all.equal(PLF_TF56$D3_VA , fitted(model.np.D3_VA.log)+resid(model.np.D3_VA.log),
check.attributes = FALSE)
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PLF_TF56$D3_T1_VA_est <-((PLF_TF56$Awp - fitted(model.np.D3_VA.log)*PLF_TF56$Vwp)
+ (PLF_TF56$Vwp - fitted(model.np.D3_VA.log)*PLF_TF56$Vwp))/
((PLF_TF56$gA - fitted(model.np.D3_VA.log)*PLF_TF56$gV)

+ (PLF_TF56$gV - fitted(model.np.D3_VA.log)*PLF_TF56$gV))
summary(PLF_TF56$D3_T1_VA_est)

PLF_TF56$D3_T2_VA_est <-PLF_TF56$D3_T1_VA_est*(exp(fitted(model.np.f.log))/
exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_VA_est)

PLF_TF56$RP3_VA_est <- -0.5*(PLF_TF56$D3_T1_VA_est/exp(fitted(model.np.g.log)))*
(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1)+

((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))
summary(PLF_TF56$RP3_VA_est)

PLF_TF56$RRP3_VA_est <- PLF_TF56$RP3_VA_est/(PLF_TF56$Y_P*PLF_TF56$YQ-
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_VA_est)
#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_rev_VA_est <- PLF_TF56$RP3_VA_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_rev_VA_est)

summary(PLF_TF56$RRP3_rev_VA_est)

##using avaraged sollutions to F.O.C. with A as a numeraire (D3_AV)
all.equal(PLF_TF56$D3_AV , fitted(model.np.D3_AV.log)+resid(model.np.D3_AV.log),
check.attributes = FALSE)

PLF_TF56$D3_T1_AV_est <-((PLF_TF56$Vwp - fitted(model.np.D3_AV.log)*PLF_TF56$Awp)
+ (PLF_TF56$Awp - fitted(model.np.D3_AV.log)*PLF_TF56$Awp))/
((PLF_TF56$gV - fitted(model.np.D3_AV.log)*PLF_TF56$gA)

+ (PLF_TF56$gA - fitted(model.np.D3_AV.log)*PLF_TF56$gA))
summary(PLF_TF56$D3_T1_AV_est)

PLF_TF56$D3_T2_AV_est <-PLF_TF56$D3_T1_AV_est*(exp(fitted(model.np.f.log))/
exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_AV_est)
PLF_TF56$RP3_AV_est <- -0.5*(PLF_TF56$D3_T1_AV_est/exp(fitted(model.np.g.log)))*

(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1)+
((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))

summary(PLF_TF56$RP3_AV_est)

PLF_TF56$RRP3_AV_est <- PLF_TF56$RP3_AV_est/(PLF_TF56$Y_P*PLF_TF56$YQ-
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_AV_est)
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#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_rev_AV_est <- PLF_TF56$RP3_AV_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_rev_AV_est)

##using sollution to F.O.C. with respect to variable inputs (V)
all.equal(PLF_TF56$D3_V , fitted(model.np.D3_V.log)+resid(model.np.D3_V.log),
check.attributes = FALSE)
PLF_TF56$D3_T1_V_est <- (PLF_TF56$Awp -fitted(model.np.D3_V.log)*PLF_TF56$Vwp)/

(PLF_TF56$gA -fitted(model.np.D3_V.log)*PLF_TF56$gA)
summary(PLF_TF56$D3_T1_V_est)
PLF_TF56$D3_T2_V_est <-PLF_TF56$D3_T1_V_est*(exp(fitted(model.np.f.log))/

exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_V_est)
PLF_TF56$RP3_V_est <- -0.5*(PLF_TF56$D3_T1_V_est/exp(fitted(model.np.g.log)))*

(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1) +
((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))

summary(PLF_TF56$RP3_V_est)

#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_V_est <- PLF_TF56$RP3_V_est/ (PLF_TF56$Y_P*PLF_TF56$YQ-

(PLF_TF56$Aw*PLF_TF56$A + PLF_TF56$Vw*PLF_TF56$V))
summary(PLF_TF56$RRP3_V_est)

PLF_TF56$RRP3_V_rev_est <- PLF_TF56$RP3_V_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_V_rev_est)

##using sollution to F.O.C. with respect to land (A)
all.equal(PLF_TF56$D3_A , fitted(model.np.D3_A.log)+resid(model.np.D3_A.log),
check.attributes = FALSE)
PLF_TF56$D3_T1_A_est <-((PLF_TF56$Vwp - fitted(model.np.D3_A.log)*PLF_TF56$Awp)/

(PLF_TF56$gV - fitted(model.np.D3_A.log)*PLF_TF56$gV))
summary(PLF_TF56$D3_T1_A_est)
PLF_TF56$D3_T2_A_est <-PLF_TF56$D3_T1_A_est*(exp(fitted(model.np.f.log))/

exp(fitted(model.np.g.log)))

summary(PLF_TF56$D3_T2_A_est)
PLF_TF56$RP3_A_est <- -0.5*(PLF_TF56$D3_T1_A_est/ exp(fitted(model.np.g.log)))*

(((exp(fitted(model.np.f.log))^2)*PLF_TF56$omega1) +
((exp(fitted(model.np.g.log))^2)*PLF_TF56$omega2))

summary(PLF_TF56$RP3_A_est)

PLF_TF56$RRP3_A_est <- PLF_TF56$RP3_A_est/ (PLF_TF56$Y_P*PLF_TF56$YQ -
(PLF_TF56$Aw*PLF_TF56$A+PLF_TF56$Vw*PLF_TF56$V))

summary(PLF_TF56$RRP3_A_est)
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#calculate "modified" RRP (RP3/total revenue) for Model 3
PLF_TF56$RRP3_A_rev_est <- PLF_TF56$RP3_A_est/(PLF_TF56$Y_P*PLF_TF56$YQ)
summary(PLF_TF56$RRP3_A_rev_est)
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E.3. Graphs illustrating the bias of the model in logs

library( "miscTools" )
compPlot(model.np.f.log$resid, exp(model.np.f.log$resid) - 1,

xlab = (expression(u^paste(symbol("\052")))),
ylab = (expression(exp(u^paste(symbol("\052"))) - 1)),
pch = 1, cex = 0.5, cex.axis = 1, cex.lab = 1.5 )

hist(exp(model.np.f.log$resid) - 1, 50, freq= TRUE, main = "",
xlab = (expression(exp(u^paste(symbol("\052"))) - 1)), ylab = "Frequency",
cex.axis = 1, cex.lab = 1.5)

hist(model.np.f.log$resid, 50, freq= TRUE, main = "",
xlab = (expression(u^paste(symbol("\052")))),
ylab =("Frequency") ,
cex.axis = 1, cex.lab = 1.5)

diff <- (model.np.f.log$resid - (exp(model.np.f.log$resid) - 1))
hist(diff, 500, freq= TRUE, main = "", xlab = (expression(nu - upsilon)))

hist(model.np.f.log$resid - (exp(model.np.f.log$resid) - 1), 500,
freq= TRUE, main = "",
xlab = expression(u^paste(symbol("\052")) - (exp(u^paste(symbol("\052"))) - 1)),
cex.axis = 1, cex.lab = 1.5)

hist(model.np.f.log$resid - (exp(model.np.f.log$resid) - 1), 500,
freq= TRUE, main = "",
xlab = expression(u^paste(symbol("\052")) - (exp(u^paste(symbol("\052"))) - 1)),
xlim = c( - 0.05, 0),
cex.axis = 1, cex.lab = 1.5)
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F. Derivation of θ̃1 and θ̃2 for Model 3

F.1. Derivation of θ̃1 and θ̃2 for Model 3 for J variable inputs

Following Kumbhakar and Tsionas (2009), we rewrite the FOC as

δj ≡
fj
f1

= w̃j − hj θ̃1

w̃1 − h1θ̃1
(35)

D3 ≡
1
J

(1 +
J∑
j=2

δj) = 1
J

J∑
j=1

fj
f1

= 1
J

J∑
j=1

w̃j − hj θ̃1

w̃1 − h1θ̃1
= ϕ28 (36)

Jϕ =
J∑
j=1

w̃j − hj θ̃1

w̃1 − h1θ̃1
(37)

Jϕ =
∑J
j=1 w̃j − hj θ̃1

w̃1 − h1θ̃1
(38)

Jϕ(w̃1 − h1θ̃1) =
J∑
j=1

w̃j − hj θ̃1 (39)

Jϕw̃1 − Jϕh1θ̃1 =
J∑
j=1

w̃j − hj θ̃1 (40)

J∑
j=1

hj θ̃1 − Jϕh1θ̃1 =
J∑
j=1

w̃j − Jϕw̃1 (41)

θ̃1(
J∑
j=1

hj − Jϕh1) =
J∑
j=1

w̃j − Jϕw̃1 (42)

θ̃1 =
∑J
j=1 w̃j − Jϕw̃1∑J
j=1 hj − Jϕh1

=
∑J
j=1[w̃j − ϕw̃1]∑J
j=1[hj − ϕh1]

(43)

For J=2:

θ̃1 =
∑J
j=2 w̃j − 2ϕw̃1∑J
j=2 hj − Jϕh1

= w̃1 + w̃2 − 2ϕw̃1

h1 + h2 − 2ϕh1
= w̃1(1− 2ϕ) + w̃2

h1(1− 2ϕ) + h2
(44)

θ̃1 =
∑J
j=1[w̃j − ϕw̃1]∑J
j=1[hj − ϕh1]

= w̃1 − ϕw̃1 + w̃2 − ϕw̃1

h1 − ϕh1 + h2 − ϕh1
= w̃2 + w̃1(1− 2ϕ)

h2 + h1(1− 2ϕ) = w̃2 − δ2w̃1

h2 − δ2h1
(45)

ϕ = 1
J

(1 +
J∑
j=2

δj) = 1
2(1 + δ2) (46)

28There is probably a typo in Kumbhakar and Tsionas (2009), where the first part of equation is given
by: D3 ≡ 1 +

∑J
j=2 δj = 1

J

∑J
j=1

fj

f1
. However, this equality does not hold.
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where,
δ2 = f2

f1
(47)

.
Then:

w̃2 + w̃1(1− 2 · 1
2(1 + δ2))

h2 + h1(1− 2 · 1
2(1 + δ2))

= w̃2 + w̃1(1− 1− δ2)
h2 + h1(1− 1− δ2)

= w̃2 − δ2w̃1

h2 + δ2h1
(48)

F.2. Derivation of θ̃1 and θ̃2 for Model 3 for 2 variable inputs

FOC of 2 variable inputs case can be written as:

f1(x, z)(1 + θ̃2) = w̃1 − h1θ̃1 (49)

f2(x, z)(1 + θ̃2) = w̃2 − h2θ̃1 (50)

We can solve the system of FOCs in the following way:

f2

f1
= w̃2 − h2θ̃1

w̃1 − h1θ̃1
(51)

Substituting f2
f1

with δ2

δ2 = w̃2 − h2θ̃1

w̃1 − h1θ̃1
(52)

And solving (35) for θ̃1 :

δ2(w̃1 − h1θ̃1) = w̃2 − h2θ̃1 (53)

δ2(w̃1 − h1θ̃1) + h2θ̃1 = w̃2 (54)

δ2w̃1 − δ2hθ̃1 + h2θ̃1 = w̃2 (55)

(h2 − δ2h1)θ̃1 = w̃2 − δ2w̃1 (56)

θ̃1 = w̃2 − δ2w̃

h2 − δ2h1
(57)
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