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Abstract

The aim of this study was to develop and evaluate models for predicting the carcass com-
position of lambs. Forty male lambs of two different breeds were included in our analysis. The
lambs were slaughtered and their hot carcass weight was obtained. After cooling for 24 hours, the
subcutaneous fat thickness was measured between the 12th and 13th rib and the total breast bone
tissue thickness was taken in the middle of the second sternebrae. The left side of all carcasses
was dissected into five components and the proportions of lean meat, subcutaneous fat, intermus-
cular fat, kidney and knob channel fat, and bone plus remainder were otained. Our models for
carcass composition were fitted using the SUR estimator which is novel in this area. The results
were compared to OLS estimates and evaluated by several statistical measures. As the models
are intended to predict carcass composition, we particularly focussed on the PRESS statistic, be-
cause it assesses the precision of the model in predicting carcass composition. Our results showed
that the SUR estimator performed better in predicting LMP and IFP than the OLS estimator. Al-
though objective carcass classification systems could be improved by using the SUR estimator, it
has never been used before for predicting carcass composition.

Keywords: Carcass, Quality, Ordinary least squares, Seemingly unrelated regression.

1. Introduction

Generally speaking, good quality carcasses should present a reduced amount of fat, but there must be
enough fat to guarantee a good presentation of the carcasses and for protecting the meat during the
refrigeration period. Carcasses with excess fat are undesirable, because this leads to higher production
costs and compels meat traders to remove the fat before selling the meat. However, fat plays an
important role in the meat sensory characteristics, and a minimum content of fat is needed in order
to maximize the meat palatability (Wood 1995; Ferguson 2004). Thus, a carcass with an optimum
composition will fetch the highest price, but whenever the carcass composition moves away from the
optimum, its value will suffer.

The success of the meat industry relies on its ability to deliver meat products that satisfy the con-
sumers’ requirements (Cortez, Portelinha, Cadavez, Rodrigues, and Teixeira 2006). Thus, an accurate
system of carcasses classification is of great importance to the meat industry (Kongsro, Roe, Kvaal,
Aastveit, and Egelandsdal 2009; Rius-Vilarrasa, Bünger, Maltin, Matthews, and Roehe 2009), since it
is the base for fair payments to producers, as well as the communication of consumers’ needs through
the supply chain (Rius-Vilarrasa et al. 2009). Therefore, researchers have dedicated much effort into
developing reliable prediction models of carcasses composition, and several research studies (e.g.
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Lambe, Navajas, Schofield, Fisher, Simm, Roehe, and Bunger 2008; Hopkins, Ponnampalam, and
Warner 2008; Hopkins 2008; Cadavez 2009) have been conducted to develop an objective system
for the classification of carcasses to be applied at the slaughter-line. The results attained by Hop-
kins (2008) and Cadavez (2009) indicate that the lean meat proportion (LMP) of lamb carcasses can
be predicted by simple models using the hot carcass weight (HCW) and fat depth measurements as
explanatory variables.

A common feature of published work concerning the prediction of carcass composition is the use
of single-equation models. In this approach, several independent equations are estimated separately
by ordinary least squares (OLS) and the estimated parameters are used to predict the proportions
of muscle, fat, and bone of carcasses. However, this assumption of independence is not supported
by biological knowledge, and it is well known that carcass compositional traits are correlated both
phenotypically and genotypically. As the proportions of the different carcass tissues are correlated,
it is expected that the equations for predicting these will be interrelated. Hence, we can expect that
the single-equation approach will be inefficient from a statistical point of view (see e.g. Judge, Hill,
Griffiths, Lutkepohl, and Lee 1988).

A set of equations which share a common error structure with non-zero covariance is said to be
contemporaneously correlated. Zellner (1962) developed the co-called “Seemingly Unrelated Re-
gression” (SUR) estimator that accounts for these contemporaneous correlations and allows the p
dependent variables to have different sets of explanatory variables. The SUR method estimates the
parameters of all equations simultaneously, so that the parameters of each single equation also take
the information provided by the other equations into account. This results in greater efficiency of the
parameter estimates, because additional information is used to describe the system. These efficiency
gains increase with increasing correlation among the error terms of the different equations (Judge
et al. 1988), as well as with larger sample size and higher multi-collinearity between the regressors
(Yahya, Adebayo, Jolayemi, Oyejola, and Sanni 2008). In the case of models for predicting carcass
composition, the SUR method can be used to estimate all parameters of all equations simultaneously,
whilst the correlations among the carcass tissues are taken into account. However, in spite of these
elegant proprieties, the SUR method has (to our knowledge) not yet been used for estimating carcass
composition prediction models.

The aims of this study were to compare alternative models for simultaneously predicting the lean meat
proportion (LMP), subcutaneous fat proportion (SFP), intermuscular fat proportion (IFP), bone plus
remainder proportion (BP), and kidney knob and channel fat proportion (KCFP) of lamb carcasses,
and to compare the efficiency of the OLS and SUR estimators.

2. Material and methods

2.1. Data

Forty male lambs of Churra Galega Bragançana (n = 22) and Suffolk (n = 18) breeds were randomly
selected from the experimental flock of the Escola Superior Agrária de Bragança. The lambs were
slaughtered, and their carcasses were weighed approximately 30 min after slaughter in order to obtain
the hot carcass weight (HCW). After chilling at 4ºC for 24 hours, the carcasses were halved through
the centre of the vertebral column, and the kidney knob and channel fat were removed and weighed.
During quartering of the carcasses, the subcutaneous fat thickness (C12, mm) between the 12th and
13th rib was measured with a caliper, and the total breast bone tissue thickness (E2, mm) was taken



FOI Working Paper 2011/12 3

with a sharpened steel rule in the middle of the 2nd sternebrae according to Delfa, González, and
Teixeira (1996).

The left side of all carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, and
bone plus remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets
associated with muscles). The carcasses’ lean meat proportion (LMP), subcutaneous fat proportion
(SFP), intermuscular fat proportion (IFP), bone plus remainder proportion (BP), and kidney and knob
channel fat proportion (KCFP) were calculated as a percentage of the total tissues in the carcasses.

2.2. Statistical analysis

Three multiple equations models were developed to simultanously predict the LMP, SFP, IFP, BP
and KCFP, and all statistical analyses were undertaken using the software “R” (R Development Core
Team 2011) with the add-on package “systemfit” (Henningsen and Hamann 2007). The fitting quality
of each multiple equations model was evaluated by the McElroy coefficient of determination (R2

M),
and the fitting quality of single equations was evaluated by the coefficients of determination of es-
timation (R2

e), standard errors of the estimate (SEE), and by the standard errors (SE) of the estimated
parameters.

After estimating the “full” models by OLS and SUR, all explanatory variables that had a parameter
with a marginal level of significance (“P value”) larger than 0.20 were removed.

All models were validated using a leaving-one-out cross-validation procedure (Montgomery 1997).
This procedure repeats the statistical analysis N times, where N is the number of observations and at
each replication a different observation is excluded from the estimation. Hence, in each replication,
N−1 observations are used for estimating the model and then the dependent variable of the omitted
observation is predicted based on the explanatory variables of the observation and the estimated coef-
ficients. The average precision of these out-of-sample predictions was evaluated by computing the
so-called predicted residuals sum of squares (PRESS) statistic and the coefficient of determination of
prediction (R2

p). The normality of the residuals was evaluated using the Shapiro-Wilk test.

Ordinary least squares

The general approach of multivariate single-equation regression models requires that there is only one
dependent variable in each regression, i.e.

yi = Xiβi + εi, (1)

where yi is the a vector of the N observations of the ith dependent variable, Xi is an N× ki matrix
of the regressors of the ith equation (including potentially a column of ones), βi is the vector of the
ki parameters of the ith equation, ki is the number of regressors (including potentially a constant)
of the ith equation, and εi is the vector of error terms of the ith equation, which is assumed to be
normally distributed. The OLS estimator assumes that all coefficients in the model are unknown and
are estimated from data by β OLS

i = (X ′i Xi)
−1 X ′i yi.

If the parameters of each equation are estimated separately by OLS, a potential correlation between
the equations is not taken into account. Hence, it is implicitly assumed that the error terms are not
contemporaneously correlated, i.e. E(εitε jt) = 0 ∀ i 6= j, where subscripts i and j indicate the equation
and subscript t denotes the observation.
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Seemingly unrelated regression

Zellner (1962) developed the Seeming Unrelated Regression (SUR) estimator for estimating models
with p > 1 dependent variables that allow for different regressor matrices in each equation (e.g. Xi 6=
X j) and account for contemporaneous correlation, i.e. E(εitε jt) 6= 0. In order to simplify notation, all
equations are stacked into a single equation:


y1
y2
...

yp

 =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 Xp




β1
β 2
...

βp

+


ε1
ε2
...

εp

 (2)

that can be re-written as Y =Xβ +ε, where the Y =
(
y′1,y

′
2, . . . ,y

′
p
)′ is a vector of all stacked dependent

variables, X is a block diagonal design matrix with the ith design matrix Xi on the iith block, β =(
β ′1,β

′
2, . . . ,β

′
p
)′ is the vector of the stacked coefficient vectors of all equations, the total number of

parameters estimated for all p submodels is K = ∑
p
i=1 ki, and ε =

(
ε ′1,ε

′
2, . . . ,ε

′
p
)′ is the vector of the

stacked error vectors of all equations.

The same estimates as by separate single-equation OLS estimations can be obtained by an OLS estim-
ation of the entire system of equations, i.e. β OLS = (X ′X)−1 X ′y. The SUR estimator that accounts for
interrelations between the single submodels can be obtained by β SUR =

[
X
′
Ω−1X

][
X
′
Ω−1Y

]
, where

Ω−1 is a weighting matrix based on the covariance matrix of the error terms Σ. This covariance matrix
Σ = [σi j] has the elements σi j = E [εinε jn], where εin is the error term of the nth observation of the ith

equation. Finally, the inverse of the weighting matrix can be calculated by Ω = Σ⊗ IN , where IN is
an N×N identity matrix and ⊗ denotes the Kronecker product. However, as the true error terms ε

are unknown, they are often replaced by observed residuals, e.g. obtained from OLS estimates, i.e.
ε̂i = yi−Xiβ

OLS
i so that the elements of the covariance matrix can be calculated by1

σ̂i j =
ε̂ ′i ε̂ j

N
. (3)

Thus, a SUR model is an application of the generalized least squares (GLS) approach and the unknown
residual covariance matrix is estimated from the data.

Models for carcass composition

The OLS estimates are obtained while ignoring any correlation between the error terms of different
equations. However, if the error terms are contemporaneously correlated, as is most likely in the case
of carcass composition studies, the estimation procedure should take this into account. In this case,
the SUR estimator leads to efficient parameter estimates (Yahya et al. 2008).

1Other possibilities for calculating the covariance matrix of the error terms are described in, e.g. Henningsen and
Hamann (2007).
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Our base model for carcass composition (“C12+E2”) consists of five single equations to simultan-
eously predict the LMP, SFP, IFP, BP and KCFP of lamb carcasses:

LMP = α0 +α1 HCW +α2 C12+α3 E2+ ε1 (4)

SFP = β0 +β1 HCW +β2 C12+β3 E2+ ε2 (5)

IFP = γ0 + γ1 HCW + γ2 C12+ γ3 E2+ ε3 (6)

BP = δ0 +δ1 HCW +δ2 C12+δ3 E2+ ε4 (7)

KCFP = θ0 +θ1 HCW +θ2 C12+θ3 E2+ ε5 (8)

In this model α0, α1, α2, and α3 are the regression coefficients and ε1 is the error term in the model
for the lean meat proportion (LMP); β0, β1, β2, and β3 are the regression coefficients and ε2 is the
error term in the model for the subcutaneous fat proportion (SFP); γ0, γ1, γ2, and γ3 are the regression
coefficients and ε3 is the error term in the model for the intermuscular fat proportion (IFP), δ0, δ1,
δ2, and δ3 are the regression coefficients and ε4 is the disturbance term in the model for the bone
plus remainders proportion (BP), and θ0, θ1, θ2, and θ3 are the regression coefficients and ε5 is the
disturbance term in the model for the kidney knob and channel fat proportion (KCFP).
Furthermore, our analysis includes the sub-model “C12” with α3 = β3 = γ3 = δ3 = θ3 = 0, i.e. without
the explanatory variable E2, and the sub-model “E2” with α2 = β2 = γ2 = δ2 = θ2 = 0, i.e. without
the explanatory variable C12.

3. Results and Discussion

3.1. Descriptive statistics

The mean, standard deviations, minimum and maximum along with the correlation coefficients among
HCW, C12, E2, LMP, SFP, IFP, BP and KCFP are shown in Table 1. HCW varied from 8.0 to 15.0 kg
(CV around 16%) and C12 varied from 0.25 to 5.4 mm and presented the highest CV (> 65%). From
the carcass tissues, the LMP had the lowest CV (4.7%), followed by the BP with a CV of 7.7%, whilst
FP had the highest CV (> 23%). These results are in agreement with the low variability observed
in the LMP by Silva (2001) and Cadavez (2009), and this small variation in the carcasses’ LMP was
pointed out as the main constraint to prediction models with high determination coefficient (Fortin and
Sherestha 1986; Silva 2001; Cadavez 2009), since this statistic is highly influenced by the variation
observed in the dependent variable (Chatterjee, Hadi, and Price 2000).
The HCW had low and positive correlation (r = 0.13) with C12 measurement and medium and positive
correlation (r = 0.52) with E2. The HCW had low and negative correlation (r = −0.14) with LMP,
medium and positive correlations with SFP (r = 0.47) and with KCFP (r = 0.31). The LMP was
highly and negatively correlated with SFP (r = −0.84) and with KCFP (r = −0.73). The SFP had
medium and positive correlation with IFP (r = 0.56) and high and positive correlation with KCFP (r =
0.82). The C12 had medium and negative correlation with LMP (r = −0.36), but high and positive
correlation with SFP (r = 0.63). The E2 had high and negative correlation with LMP (r = −0.61),
and high and positive correlations with SFP (r = 0.77) and with KCFP (r = 0.75).

3.2. Results of OLS and SUR estimations

The estimated parameters and summary statistics for the three models “C12”, “E2”, and “C12+E2”
are presented in Table 2. Given that the same regressors were used in each equation, these estimates
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Table 1: Descriptive statistics and correlations among HCW, C12, E2, LMP, SFP, IFP, BP, and KCFP
Descriptive statistics Correlations

Variable Mean SD Min Max C12 E2 LMP SFP IFP BP KCFP

HCW, kg 12.2 1.98 8.0 15.0 0.13 0.52 -0.14 0.20 0.47 -0.55 0.31

C12, mm 1.3 0.59 0.35 2.5 1 0.51 -0.36 0.63 0.25 -0.41 0.42

E2, mm 16.4 3.46 7.8 24.3 1 -0.61 0.77 0.52 -0.52 0.75

LMP, % 61.4 2.86 57.7 66.8 1 -0.84 -0.69 0.14 -0.73

SFP, % 4.9 1.73 1.5 8.2 1 0.56 -0.44 0.82

IFP, % 9.1 1.85 3.6 12.9 1 -0.63 0.55

BP, % 23.3 1.78 20.2 27.5 1 -0.48

KCFP, % 1.4 0.50 0.38 2.2 1

(including standard errors) can be obtained either by OLS or by SUR. As the dependent variables sum
up to 100% at each observation and exactly the same regressors were used in each equation, the cov-
ariance matrix of the residuals becomes singular. Hence, the weighting matrix of the SUR estimator
cannot be inverted so that a SUR estimation of all five equations becomes infeasible. However, an
arbitrary equation can be dropped and the system can be estimated with the remaining four equations.
After the estimation, the parameters of the dropped equation can be retrieved by the “adding-up”
restriction, i.e. the intercepts of all five equations have to sum to 100% and the parameters of each ex-
planatory variable (except for the constant) have to sum to zero. The variances and covariances of the
parameters of the omitted equation can be calculated by the delta method. The estimated parameters
and their variances and covariances do not usually depend on the equation that is dropped. However,
as all five equations can be estimated by OLS and these estimates coincide with SUR estimates in
our current model specification, there is no advantage of using SUR over OLS for estimating these
models.

As expected, the general model “C12+E2” gives the best overall fit, indicated by the highest McElroy-
R2 (0.476), followed by model “E2” (0.399), while model “C12” presents the lowest McElroy-R2

(0.292). These results indicate that total breast bone tissue thickness (E2) explains a higher proportion
of carcass composition than subcutaneous fat thickness (C12), but both measures together explain
the largest proportion. This means that both of the carcass fat depth measurements, C12 and E2, are
relevant determinants of tissue proportions in lamb carcasses, which is in accordance with the results
attained by Cadavez (2009). Our results also confirmed those attained by Hopkins et al. (2008) and
Hopkins (2008), who showed that HCW alone is unable to explain the LMP.

When looking at the goodness of fit of the individual equations, it becomes apparent that model
“C12” (i.e. with explanatory variables HCW and C12) has the lowest coefficients of determination of
estimation

(
R2

e
)

in four out of five equations (LMP, SFP, IFP, and KCFP). For instance, model “C12”
can only explain a very limited variation of LMP (R2

e = 0.140), while model “E2” (R2
e = 0.425)

performs much better, while the general model “C12+E2” (R2
e = 0.425) is not (noticeably) better than

model “E2”.

As the correlation between the two fat measurements (C12 and E2) is moderately high (r = 0.51),
the general model “C12+E2” is somewhat plagued by multicollinearity between its regressors. This
results in less precise parameter estimates and can be seen by increased standard errors and lower
coefficients of determination of prediction

(
R2

p
)
. In fact, the standard errors of the regression coeffi-

cients and the standard errors of the estimates (SEE) are often larger in the general model “C12+E2”
than in the specific model “E2”. Moreover, the predictive ability of model “E2” measured by the
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coefficient of determination of prediction
(
R2

p
)

is even better than the predictive ability of the general
model “C12+E2” for three out of five equations (LMP, IFP, KCFP).

As models “C12” and “E2” are nested in model “C12+E2”, we can apply an F-Test on the general
model “C12+E2” to test the restrictions implied by models “C12” and “E2”. While model “C12” is
clearly rejected in favour of the general model “C12+E2”, model “E2” is not significantly worse than
the general model “C12+E2”. Hence, given the costs of taking two measures of carcass fat depth (C12
and E2), model “E2” is probably the most cost-effective prediction model for slaughterhouse applic-
ations since it is based on a single fat measurement (E2) and is not significantly worse in predicting
lamb carcass composition than the more costly model “C12+E2”. As slaughterhouses would only
implement a new prediction model if it can be done easily and at low cost, the inclusion of a second
fat measurement in the prediction model cannot be justified because of the resulting economic cost.

The correlations between the residuals of our “preferred” model “E2” are shown in Table 3. This table
indicates that several equations are highly or moderately interrelated. For instance, the first equation
(LMP) is highly interdependent with the second equation (SFP, r = −0.709) and the third equation
(IFP, r = −0.670) and moderately interdependent with the fourth equation (KCFP, r = −0.505). As
the OLS approach does not take these interrelationships into account, the OLS estimates should be
inefficient (not as precise as possible). However, as we use exactly the same explanatory variables in
each equation, OLS estimates coincide with SUR estimates and hence, are not negatively affected by
the contemporaneous correlation of the error terms.

Table 3: Residuals correlations for model “E2” estimated by ordinary least squares method (OLS)
LMP SFP IFP KCFP BP

LMP 1 -0.709 -0.670 -0.505 -0.189

SFP 1 0.445 0.569 -0.242

IFP 1 0.337 -0.446

KCFP 1 -0.229

BP 1

Given that some of the estimated parameters of our “preferred” model “E2” are statistically non-
significant and that the inclusion of non-significant explanatory variables generally reduces the preci-
sion of the estimates, we tried to improve the precision of our estimates by removing non-significant
regressors. Thus, we re-estimated model “E2” after removing all regressors that were not significant
at the 20% level. We chose a rather high threshold as we wanted be cautious and avoid removing
relevant explanatory variables.2 As this adjusted version of model “E2”, say “E2a”, no longer has
the same explanatory variables in all equations, OLS estimates differ from SUR estimates and all five
equations can be included in the SUR regression. The OLS and SUR estimates as well as summary
statistics are shown in Table 4. An F-Test applied to model “E2” shows that the three parameters that
have been removed in model “E2a” are jointly not statistically significant. Hence, model “E2a” is
not significantly worse than model “E2”. The Shapiro-Wilk statistic shows that for both estimators
(OLS and SUR) the single-equation residuals have zero mean and follow a normal distribution (data
not shown). As the McElroy-R2 is not intended for OLS regressions and the McElroy-R2 values for
model “E2a” are—in contrast to the models shown in Table 2—based on all five equations, we cannot
make reasonable comparisons using the McElroy-R2 of model “E2a” here. Given that the OLS es-
timation ignores interrelations between equations, the OLS estimates differ between model “E2” and

2In fact, we would remove exactly the same explanatory variables if we had any threshold between 11% and 35%.
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model “E2a” only if an explanatory variable is removed in the respective equation, i.e. in the equa-
tions for SFP and KCFP. In contrast, the SUR estimator accounts for contemporaneous correlations
among the equations and hence, the SUR estimates of all equations differ between model “E2” and
model “E2a”. Furthermore, the efficiency of the SUR estimates compared to the OLS estimates is
expected to increase in the presence of highly correlated covariates (Yahya et al. 2008), which is a
common feature of carcass composition data. Since all tissues are taken in the same experimental
unit (the carcass), the measurements are correlated with each other (multicolinear data) as shown by
Cadavez (2009). Hence, the parameters obtained by SUR are characterized by lower standard errors.
As the error terms for LMP have the highest correlations with other error terms, the reduction of the
standard errors is especially visible in this equation: the SE of the intercept decreases by 44% and the
SE of the parameter of HCW decreases by 35%. Thus, modeling the carcass composition of lambs
while ignoring the residuals variance-covariance structure results in inefficient estimates (Yahya et al.
2008).

Given that the OLS estimates of the unchanged equations are the same in model “E2” and model
“E2a”, the coefficients of determination of prediction R2

p are also the same for these equations. While
the removal of the intercept in the equation for SFP increased the R2

p by 2.3%, the removal of the
intercept and HCW in the equation for KCFP reduced the R2

p by 1.8%. When estimating model “E2a”
by SUR instead of by OLS, the R2

p values for LMP and IFP increase by 1.9% and 1.3%, respectively,
while the R2

p values for SFP and BP only decrease by 0.8% and 0.3%, respectively. Hence, estimating
model “E2a” by SUR improves the average precision of the predictions.

The correlations of the residuals obtained from estimating model “E2a” by OLS and SUR are shown
in Table 5.

Table 5: Residuals correlations for model “E2a” estimated by OLS and SUR estimators
OLS SUR

LMP SFP IFP KCFP BP LMP SFP IFP KCFP BP

LMP 1 -0.708 -0.670 -0.482 -0.189 1 -0.714 -0.673 -0.514 -0.179

SFP 1 0.444 0.538 -0.241 1 0.452 0.574 -0.248

IFP 1 0.323 -0.446 1 0.345 -0.449

KCFP 1 -0.229 1 -0.236

BP 1 1

4. Conclusion

This paper presents a novel approach to simultaneously predict carcass components using the SUR
technique and the results are relevant for implementing objective carcass classification systems. Thus,
our findings can have a positive effect on the meat industry, since the methodology applied to predict
the carcass composition can be integrated into decision support systems in order to use all carcass
tissues for the definition of the carcasses’ price. The SUR estimator provides the lowest standard
errors of the estimated parameters and thus, the highest precision of the estimates. Furthermore, our
results revealed that HCW and the E2 measurement are the most relevant predictors of carcass tissues.
This study shows that SUR estimates are consistently better than the OLS (equation-by-equation)
estimates, since the SUR estimator takes the correlation between the error terms into account . Thus,
SUR is a robust methodology for predicting the carcass composition of lambs. In spite of the elegant
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properties of the SUR estimator, it is an underused multivariate regression technique, especially for
predicting carcass composition. Indeed—as far as we know—it has not been used for this purpose
before.

References

Cadavez VAP (2009). “Prediction of lean meat proportion of lamb carcasses.” Archiva Zootechnica,
12(4), 46–58.

Chatterjee S, Hadi AS, Price B (2000). Regression analysis by a example. John Willey & Sons, Inc.,
New York.

Cortez P, Portelinha M, Cadavez VAP, Rodrigues S, Teixeira A (2006). “Lamb meat quality assess-
ment by support vector machines.” Neural Processing Letters, 24, 41–51.

Delfa R, González C, Teixeira A (1996). “Use of cold carcass weight and fat depth measurements to
predict carcass composition of rasa Aragonesa lambs.” Small Ruminant Research, 20, 267–274.

Ferguson D (2004). “Objective on-line assessment of marbling: a brief review.” Australian Journal
of Experimental Agriculture, 44(7), 681–686.

Fortin A, Sherestha JNB (1986). “In vivo estimation of carcass meat by ultrasound in ram lambs
slaughtered at an live weight of 37 kg.” Animal Production, 43, 469–475.

Henningsen A, Hamann JD (2007). “systemfit: A Package for Estimating Systems of Simultaneous
Equations in R.” Journal of Statistical Software, 23(4), 1–40. URL http://www.jstatsoft.

org/v23/i04/.

Hopkins DL (2008). “An industry applicable model for predicting lean meat yield in lamb carcasses.”
Australian Journal of Experimental Agriculture, 48, 757–761.

Hopkins DL, Ponnampalam EN, Warner RD (2008). “Predicting the composition of lamb carcasses
using alternative fat and muscle depth measures.” Meat Science, 78, 400–405.

Judge GG, Hill RC, Griffiths WE, Lutkepohl H, Lee TC (1988). Introduction to the teory and practise
of econometrics. 2 edition. Wiley, New York.

Kongsro J, Roe M, Kvaal K, Aastveit AH, Egelandsdal B (2009). “Prediction of fat, muscle and value
in Norwegian lamb carcasses using EUROP classification, carcass shape and length measurements,
visible light reflectance and computer tomography (CT).” Meat Science, 81, 102–107.

Lambe NR, Navajas EA, Schofield CP, Fisher AV, Simm G, Roehe R, Bunger L (2008). “The use
of various live animal measurements to predict carcass and meat quality in two divergent lamb
breeds.” Meat Science, 80, 1138–1149.

Montgomery DC (1997). Design and analysis of experiments. Fourth edition edition. John Wiley &
Sons, New York.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

http://www.jstatsoft.org/v23/i04/
http://www.jstatsoft.org/v23/i04/
http://www.R-project.org
http://www.R-project.org


12 FOI Working Paper 2011/12

Rius-Vilarrasa E, Bünger L, Maltin C, Matthews KR, Roehe R (2009). “Evaluation of video im-
age analysis (via) technology to predict meat yield of sheep carcasses on-line under UK abattoir
conditions.” Meat Science, 82, 94–100.

Silva SJCR (2001). Composição das carcaças e dos depósitos internos de gordura de ovelhas de raça
Churra da Terra Quente. Ph.D. thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real.

Theil H (1971). Principles of Econometrics. Wiley, New York.

Wood J (1995). The influence of carcass composition on meat quality, chapter Quality and Grading
of Carcasses of Meat Animals, pp. 131–155.

Yahya WB, Adebayo SB, Jolayemi ET, Oyejola BA, Sanni OOM (2008). “Effects of non-
orthogonality on the efficiency of seemingly unrelated regression (SUR) models.” InterStat Journal,
pp. 1–29. URL http://interstat.statjournals.net/.

Zellner A (1962). “An efficient method of estimating seemingly unrelated regression equations and
test for aggregation bias.” Journal of American Statistical Association, 57, 348–368.

Affiliation:
Vasco A. P. Cadavez
Mountain Research Center (CIMO)
ESA - Instituto Politécnico de Bragança
Campus de Santa Apolónia, Apartado 1172
5301-855 Bragança, Portugal
E-mail: vcadavez@ipb.pt

Arne Henningsen
Institute of Food and Resource Economics
University of Copenhagen
Rolighedsvej 25
1958 Frederiksberg C, Denmark
E-mail: arne.henningsen@gmail.com
URL: http://www.arne-henningsen.name/

http://interstat.statjournals.net/
mailto:vcadavez@ipb.pt
mailto:arne.henningsen@gmail.com
http://www.arne-henningsen.name/

	Introduction
	Material and methods
	Data
	Statistical analysis
	Ordinary least squares
	Seemingly unrelated regression
	Models for carcass composition


	Results and Discussion
	Descriptive statistics
	Results of OLS and SUR estimations

	Conclusion

