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Abstract 

This study develops a dynamic multi-output model of farmers’ crop allocation decisions that allows 

estimation of both short-run and long-run adjustments to a wide array of economic incentives.  The 

method can be used to inform decision-makers about a number of issues including agricultural 

policy reform and environmental regulation. The model allows estimation of dynamic effects 

relating to price expectations adjustment, investment lags and crop rotation constraints.  Estimation 

is based on micro-panel data from Danish farmers that includes acreage, output and variable input 

utilisation at the crop level.  Results indicate that there are substantial differences between the short-

run and long-run land allocation behaviour of Danish farmers and that there are substantial 

differences in the time lags associated with different crops. Since similar farming conditions are 

found in northern Europe and parts of the USA and Canada, this result may have more general 

interest. 
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1. Introduction 

Multi-crop farming involves managing cross-crop effects in a number of dimensions. Farmers often 

practice crop rotation reflecting positive and negative nutrient and disease/pest effects from the 

previous years’ production decisions. In the Danish context, one example is that farmers typically 

take account of first year nitrogen carry-over effects in crop rotation schemes. Another example is 

that potatoes are usually not grown on the same plot for more than two consecutive years in order to 

reduce disease risks (e.g. potato blight) and pest attacks (e.g. potato stem borers).   Following potato 

production, other ‘cleaning’ crops like rape are produced for 3-4 years.  Changing land allocation 

often involves shifts between plots being cultivated with different crop rotation schemes and the 

time delay before full implementation may be longer than a single rotation span.  

Peak capacity constraints often generate other types of cross-crop effects. For example, Danish 

farmers typically prefer a mix of spring and winter crops of different types in order to spread 

sowing and harvesting seasons to reduce peak capacity utilisation of labour and equipment.  Such 

cross-crop effects may in turn generate long and complex land allocation reaction delays if optimal 

cropping requires investment in new equipment.  Rotation effects are made more complex since 

investments in machinery are often not made immediately, but at the time when it is optimal to 

scrap old depreciated equipment. Finally, harvest yields and output prices cannot be predicted 

exactly at the beginning of the growth season when the land allocation decision is made and must 

therefore be based on the farmer’s expectations.  Since expectations adjust to changes in underlying 

economic conditions, further delays in land allocation reactions may result. 

Incorporating cross-crop linkages and dynamic adjustments makes for a challenging empirical 

problem when the crop acreage allocation behaviour of farmers is to be estimated.  Ideally, 

estimation should utilise a farm level dynamic setup allowing for adjustment in land allocation that 

incorporates cross-crop and equipment utilisation restrictions. However, in practice the data 

required for such a model to be estimated (a long micro panel with detailed information on crop 

level inputs, outputs and land allocation) are seldom available and other estimation strategies have 

typically been applied. 

It is well known that the micro-economic theory describing farmer behaviour only survives 

aggregation under very restrictive assumptions and that aggregation generally leads to 

misspecification (e.g. Chambers, 1988). Still, empirical applications using duality theory in 

connection with aggregate data are common and may give a reasonable indication of parameter 

magnitudes.  For example, Guyomard, Baudry and Carpentier (1996) estimate crop acreage 



FOI Working Paper 2010/3 

 

 2

allocation response using aggregate annual time series while Plantnga et al. (2002), Coyle (1993a), 

Coyle (1993b), Moore and Negri (1992), and Lichtenberg (1989) estimate land allocation using 

aggregate panel data. A number of papers using aggregated time series data have incorporated 

dynamic adjustment in one way or the other ((see e.g. Coyle (1993b), Howard and Shumway (1988) 

and Eckstein (1984) for nice examples and Askari and Commings (1977) for a comprehensive 

review of earlier studies). While results vary substantially between crops, countries and methods 

many studies suggest the presence of sizable time lags. 

Some studies use micro cross-section data at the farm level (e.g. Moore, Gollehon and Carey 

(1994); Mythili (1992); and Weaver and Lass (1989)) and estimation results are often interpreted as 

long run effects.  Short-run adjustment effects have been estimated using micro panels in a number 

of studies (e.g. Coxhead and Demeke (2004); Moro and Sckokai (1999); Lence and Hart (1997); 

and Lansink and Peerlings (1996)). However, these models do not attempt to estimate dynamic 

adjustment/inter-temporal effects. An exception is Thomas (2003) where crop production functions 

and nitrogen carry-over coefficients of different crops are estimated assuming that farmers take 

account of nitrogen carry over and the potential for reducing future fertilisation costs this entails. 

The estimated structural model allows for crop rotation schemes under the assumption that these are 

driven by farmers taking the dynamics of nitrogen carry over into account when profit maximising.  

The resulting structural model makes it possible to simulate the dynamic effects of various policies 

like environmental policy aimed at reducing nitrogen loss where nitrogen carry-over is the dynamic 

effect of primary concern. 

In this study, we develop and estimate a dynamic model of land allocation that takes account of a 

number of major causes of land allocation lags: expectations, adjustment costs, investment lags and 

crop rotations. Our model is based on farmers’ dynamic optimisation behaviour and allows 

estimation of land allocation conditional on expected crop gross margins. Our empirical estimation 

is based on a long micro panel with up to 11 annual observations per farm and with detailed crop 

level data on acreage, output and variable input use, making it possible to calculate crop level gross 

margins. The ambition of addressing all major dynamic effects rules out structural modelling of 

land allocation dynamics because of the unrealistic requirements to data and model complexity this 

would imply.  Instead we estimate a reduced form of relationship among crop rotation, peak 

capacity effects and land allocation.  Our empirical estimates are based on GMM methods (Arellano 

and Bond (1991) and Arellano and Bover (1995)) applied to a system of dynamic land allocation 

equations taking account of the uncertain environment.  To our knowledge, this is the first dynamic 
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micro model of land allocation under uncertainty estimated on data from the temperate climate zone 

that allows for crop rotation and other crop allocation lags. 

We find substantial differences between short and long-run land allocation effects and also 

substantial variation in the adjustment speeds associated with different crops. For rape and pea we 

find short-run land allocation elasticity with respect to its own per hectare gross margin in the order 

of 0.25 while the corresponding long run elasticity is in the order of 1.37. For winter crops like 

barley and wheat the corresponding elasticities are 1.00 and 2.08 respectively, and for spring barley 

0.97 and 2.49 respectively. Time lags vary substantially between crops with first year effects 

ranging from about 20% (for rape) to 50% (for winter barley and wheat) of long run effects.  Since 

such estimates are lacking in the literature, our results may be of interest in other European 

countries and parts of North America that produce under similar climatic and economic conditions1. 

 In the next section we present the economic model for the farmer’s optimisation problem. In 

section 3 we describe the panel data set used in estimation.  In section 4 we derive the estimable 

equations and discuss the GMM estimators that we apply. In section 5 we present the results. 

Conclusions are presented in section 6. 

 

2. An Economic Model of Land Allocation 

There is a large amount of literature on agricultural multi-crop production where there is an 

important dividing line between models that assume input jointness across outputs and models that 

assume non-jointness. The standard dual modelling approach is to model agricultural production as 

a multi-output production process, where input jointness is assumed across outputs, and to estimate 

a derived system of input demand and output supply functions (see e.g. Heshmati and Kumbhakar 

(1994), Fontein et al. (1994) for applications to micro panel data). Another line of work proposes a 

non-joint production function with fixed but allocatable resources (e.g. land) providing the only 

form of jointness (see e.g. Shumway (1988) and Moore, Gollehon and Carey (1994)). 

Although the argument of non-jointness seems convincing for some inputs (e.g. fertiliser, 

pesticides, sowing seed, tractor fuel, etc.), true jointness seems probable for others (e.g. labour and 

capital). In a short run model one might argue that it is reasonable to treat capital and possibly 

labour as fixed but allocatable inputs. However, because typically there are important peak 
                                                      
1 When comparing studies of farm land allocation across countries and continents, it is important to be aware that in 
addition to differences in climate and basic economic conditions there may be important differences in the applied 
agricultural policies and environmental regulations. 
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utilisation capacity constraints around sowing and harvesting, true jointness seems probable (i.e. 

increasing production of crop 1 will require capital and labour in a peak period when combined with 

crop 2, but in an off-peak period when combined with crop 3). 

In the following, we assume true jointness for the vector Z%  of quasi-fixed labour and capital 

inputs like machinery while inputs like fertiliser, pesticides, sowing seed and tractor fuel are 

assumed to be non-joint. The vector 1 2( , ,..., ,... )j JΩ = Ω Ω Ω Ω% % % % % is composed of J vectors with vector 

jΩ%  indicating the amount of the different non-joint inputs allocated to production of crop j. In the 

short run (within one growing season) land is also assumed to be a non-joint (fixed but allocable) 

input and so the vector 1 2( , ,..., ,... )j JL L L L L=% % % % % indicates the amount of land allocated to each of the J 

crops while totL%  is the total amount of land available. However, positive and negative nutrient and 

disease/pest effects cause interdependence between land allocations in different growing seasons 

manifested through the crop rotation rules practiced by farmers, i.e. the land allocated to crop 1 in 

period 1 affects the amount of land that can be allocated to crop 2 in period 22. In order to capture 

this we must therefore consider crop production over several seasons covering the applied crop 

rotation constraints. Let Τ  indicate this number of growing seasons (years) and τ  an index 

indicating the growing season. Let 1 2( , ,..., ,... )j JY Y Y Y Y=% % % % %  denote the vector of crop outputs and Θ  a 

vector of stochastic variables capturing random variations in climate and disease/ pest attacks. 

Using these definitions the multi-crop production relationship and profit maximisation problem 

covering a complete crop rotation cycle become:  
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 (1) 

                                                      
2 Note that crop rotation constraints reflect the operational way that a farmer takes account of the multitude of external 
effects generated over time between crops grown on the same plot. Clearly such crop rotation constraints may be 
changed if economic (or climate) conditions change substantially. Here we assume that crop rotation rules and 
constraints applied by the farmer remain unchanged over the price variations covered by our data. 
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where YP , PΩ and ZP  are the input-output prices, and expectations are taken over the joint distribu-

tion of Θ , YP , PΩ and ZP  held by the farmer. The production frontier (.)F% is assumed to be quasi-

concave to ensure uniqueness and captures the expected external effects between crops grown at 

different times on the same plot (crop rotation) and between crops grown on different plots during 

the same period (peak capacity constraints) in a steady state where the cycle over Τ  periods is 

repeated continually. Thus (.)F%  captures jointness caused by nutrient and disease/pest carry over, 

capital/labour capacity utilisation, etc. in long run equilibrium. The (.)F% -frontier implies a 

corresponding relationship between mean values of inputs and outputs over the cycle, i.e. 

( , , , , ) 0F Y L ZΩ Θ =
)

 where
=1

/L Lτ
τ

Τ

= Τ∑
)

% ,
=1

/τ
τ

Τ

Ω = Ω Τ∑ % , 
=1

/Y Yτ
τ

Τ

= Τ∑ and 
=1

/Z Zτ
τ

Τ

= Τ∑ % . Further, 

since total expected profit Π%  is maximised when mean expected profit over the cycle 
Y ZE P Y P P ZΩ⎡ ⎤Π = − Ω −⎣ ⎦ is maximised, the long run maximisation problem can be written as:  

 

 

, , ,

J

j=1

. .  0 ( , , , , )

          

Y Z

Y L Z

tot
j

Max E P Y P P Z

S T F Y L Z

L L

Ω

Ω
⎡ ⎤Π = − Ω −⎣ ⎦

= Ω Θ

=∑

)

 (2) 

 

The solution to (2) gives the mean optimal values taken over the crop cycle of the solution to (1)3. 

This is the general formulation of the farmer’s optimisation problem. Three key assumptions are 

introduced to identify a model of land allocation based on crop specific gross margins. Specific 

structure is added to allow us to separate the farmer’s land allocation problem (capturing all 

dynamic effects) from the short run cultivation intensity problem (intensity of fertilisation, pesticide 

application, etc.). Then by conditioning on observed gross margins (that reflect the farmers solution 

to the cultivation intensity problem) it becomes possible to estimate a tractable dynamic model of 

land allocation behaviour. 

                                                      
3 When we disregard discounting and price variations in steady state, the farmer is also indifferent as to the distribution 
of mean inputs and outputs over the cycle and so in effect (2) solves the farmer’s optimisation problem. (i.e. the farmer 
is indifferent between the various specific solutions to (1) whose mean corresponds to the solution to (2)). 
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 Assumption (i) is that ( )F •  is characterised by weak separability of the partition ( , )Z L
)

 so that  

 

 ( , , , , ) ( , , , ( , ))F Y L Z f Y L L ZΩ Θ = Ω Θ
) )

  (3) 

 

Assumption (i) means that labour, capital and uncultivated land combine to produce an intermediate 

input that we could call cultivated land (L). Clearly, cultivating a given land area for different crops 

requires different levels and timings of capital and labour utilisation over the growing season 

depending on when and how crops are sown, fertilised, sprayed with pesticides, harvested and 

stubbles ploughed. Dependencies among crops are captured in the (.)L function, for example 

combining winter and spring crops may require a lower level of available capital and labour 

capacity than only growing spring crops. The implication of the assumed separability is that labour 

and capital capacity requirements are independent of yield and variable input (e.g. fertilisation and 

pesticide) levels applied in the relevant range covered by our data, i.e. that: 

  

 

/ / 0 for all , , ,
/ /

i i

k j g j

dL dZ dL dZd d i j g k
dY dL dZ d dL dZ

= =
Ω   (4) 

 

and conversely that  and 
k g

df df
dY dΩ

are independent of the specific combination of Z-vector inputs 

producing a given vector of cultivated land (L). Though restrictive the assumed independence does 

not seem blatantly unreasonable, i.e. the labour, combine and tractor capacity needed to sow, 

harvest and fertilise depend primarily on the amount and quality of land to be covered and not on 

the specific yield to be harvested or the amount of fertiliser applied.  

Assumption (ii) is that cultivated land is a non-joint input in the ( , , , ) f Y LΩ Θ  relationship 

so that also utilising non-jointness of Ω% -inputs makes it possible to specify the general relationship 

0 ( , , , )f Y L= Θ Ω  in (4) as: 

 

 ( , , )  for all jj j j jY f L= Ω Θ   (5) 
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This assumption is more restrictive. It amounts to assuming that the crop rotation rules and con-

straints applied by the farmer ensure the same expected relationship between output and Ω% -inputs 

irrespective of land allocation to other crops. Thus, these rules and constraints restrict the farmer’s 

land allocation possibilities (captured by the (.)L ), but when the farmer respects these restrictions, 

expected yields of a given crop are not affected by land reallocation between other crops. These 

restrictions capture the basic idea behind farmers following crop rotation rules, but some crops may 

be used in two or more rotation systems resulting in different mean yields for the given crop. If land 

reallocation implies shifts between such rotation systems, mean yields may be affected. However, 

this effect is probable and the fact that our model allows for crop rotation-induced jointness through 

the (.)L  function relaxes the usual straight non-jointness assumption used in many other studies.  

 Assumption (iii) is that crop production functions ( , , )j j jf LΩ Θ  are homogenous of degree one 

in jL  and jΩ . This implies constant returns to scale in land and Ω% -inputs. This assumption seems 

reasonable off-hand and a study using the same data set (Hansen and Jensen, 1998) supports it.  

Assumption (iii) allows us to normalise so that equation (5) can be rewritten as a per hectare 

production function: 

 ( , )  for all jj j jy f ω= Θ  (6) 

where jy j

j

Y
L

= , j
j

jL
ω

Ω
=  and we have dropped land in the functional expression. After inserting (6), 

(3) and L L=
)

 into (2) and normalising with totL  the farmer’s maximisation problem becomes: 
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JL l l z L L L Z L=

)
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This maximisation problem can be solved in two separate steps. The cultivation intensity problem is 

solved by deriving first order conditions for each non-joint input separately by differentiating the 

Lagrangian with respect to jω . Given the optimal combination of the non-joint inputs *
jω , we define 

the optimal per hectare expected gross margin * * *
, ,

( , )j
Y

Y
j j j jP P

P E P f Pω ωΩ
Ω

Θ
⎡ ⎤= Θ −⎣ ⎦  and the vector 

of expected capital/labour prices *Z ZP E P⎡ ⎤= ⎣ ⎦ . Assuming independence of the ZP distribution and 

substituting in *
jP , *ZP , the land share constraint in the place of Jl  (i.e. 

1

1

1
J

J j
j

l l
−

=

= −∑ ) and the Z-

vector function ( 1 1( ,..., , )tot
Jz A l l L−= ) implied by 

1

1 1
1

(́ ,..., ,1 , , ) 0
J

tot
J j

j

L l l l z L
−

−
=

− =∑  the 2nd step land 

allocation problem become:  

 

 1 1

J-1
* * * *

,..., j=1

( ) ( , )
J

Z tot
J j J jl l

Max P P P l P A l Lπ
−

= + − −∑
 (8) 

 

Let *l denote the solution vector to (8) where crop J is not included in l  but residually given by the 

land constraint. Farmers are able to adjust to *ω  immediately from growth season to growth season 

whereas adjustment toward *l  may only be possible with a lag covering several growth seasons. 

 Though the gross margins ( *
jP ) and the capital/labour costs ( *ZP ) that the farmer expects will 

apply in optimum are not observed in our data, we do observe realised land allocations, crop-

specific realised gross margins and indicators of realised capital/labour costs. This formulation of 

the farmer’s problem therefore allows us to utilise the available data efficiently by focusing on the 

farmer’s second stage land allocation problem. Empirical implementation requires assuming non-

jointness of cultivated land. This implies that when we allow for jointness caused by crop rotation, 

we have to assume that if a farmer chooses to use a given crop in two or more different rotation 

systems in optimum, the resulting gross margins for this crop are the same. This is a restrictive 

assumption but, much less so than the straight land non-jointness assumption that rules out jointness 

caused by crop rotation altogether used in many other studies.  
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3. The data 

The estimations are based on a panel data set provided by Landbrugets Rådgivningscenter (The 

Danish Agricultural Advisory Centre). The panel data set is unbalanced covering twelve years 

(1980 to 1991) with, on average, 1350 farms represented each year. 

Data are gathered through a voluntary programme involving intensive consultations, which is run 

by the Danish Farm Associations Extension Service. Although it is not a random sample, 

participating farmers a priori are motivated and have an incentive to provide data of high quality.  

For each farm, data include detailed annual accounts of variable costs for each crop (and for each 

branch of animal husbandry) along with corresponding accounts of quantitative flows of most 

relevant inputs and outputs (e.g. fertiliser, pesticides, seed, crop yield, etc.). This allows us to 

calculate realised gross margins defined as income net of variable non-joint costs at the crop level. 

To avoid estimation intricacies of the handling of corner solutions (see e.g. Weaver and Lass 

(1989)), we selected farms that produced all modelled crops for at least five consecutive years. To 

sustain a reasonable number of farms in the long panel, we base our model on three crop 

aggregates: (i) winter wheat, winter rye and winter barley; (ii) spring rape and pea; (iii) spring 

barley. The aggregates are chosen so that crops in the same aggregate hold the same position in the 

crop rotation systems typically used by Danish farmers. In addition to the required production, 

some of the selected farms also produce crops not included in the three groups while others also 

produce pigs.  For swine producers, pig production typically dominates value added and does not 

depend on the growth of fodder crops. Hence, the optimal level of pig production is probably not 

influenced substantially by land allocation decisions.  Furthermore, a substantial part of land 

allocated to ‘other crops’ is used to grow sugar beets, potatoes and specialty crops typically on more 

lucrative long-range contracts. The existence of such contracts makes it less likely that optimal land 

allocation to ‘other crops’ will be influenced substantially by changes in gross margins of the crops 

on which we focus. Thus, these production lines are not modelled, but included as conditioning 

variables. 

Given these criteria, the data contain 226 farms in the selected panels covering 1980-1991 with 

1379 observations in all. Farms in the panel are observed for at least 5 and up to 11 years with more 

than half of the farms observed for 6 years or more (the structure of the panel is reported in table 1). 

Per hectare gross margins are calculated for each crop for each farm for each year as income from 

crops minus the following variable cost elements: pesticides, fertiliser, manure, phosphorus, 

calcium, sowing seed, energy for crop drying, tying string, machine station services and tractor fuel. 
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We calculate single price indices for capital and labour services for each farm using the costs for 

labour and capital for each farm as well as average farmhand wages and list prices for capital for 

Denmark. 

Table 2 presents means and standard deviations for land shares, gross margins and other key 

variables. Note that total land on average amounts to 115.4 hectares, while less than 25 hectares are 

allocated to the other crops. Thus, farms included in the estimation utilise about 80 percent of the 

total land for crop covered by our model. Pig production averages 7.8 tons per farm. Figure 1 

reports the average land shares, gross margins and capital and labour price index over time. Note 

that the average spring barley land share decreased until the mid-1980s while winter crop average 

land share increased. During this period, profitability of winter crops increased because of new 

pesticides which were more effective against pest/disease attacks in winter crops. However, gross 

margins are also affected by variations in climate/weather conditions, in particular the large 

decreases in gross margins between 1985 and 1987 were primarily caused by low yields due to bad 

weather conditions in the growth and harvest seasons. 

 

4. Estimation  

We estimate the farmers’ second stage land allocation problem as formulated in (8). The model 

includes farms that in addition to the three modelled crop aggregates also grow other crops (mainly 

potatoes and sugar beets on long-term contracts) or have pig production. For these farms, land 

allocation is conditional on the level of these additional outputs. Thus, from (8) we have a single 

valued *(.) ( , , )totA A L= l c where *c  is a vector of the two conditioning variables (pig production in 

tons and land cultivated with other crops in hectares) that the farmer expects will apply in long run 

optimum.4 This formulation also applies for core crop farms only growing the three crop groups 

(conditioning variables in this case have the value zero).  

We assumed the quadratic functional form for * *1( , , ) ' ' ' ' ' '
2

tot totA L= + + + %%l l c l a l A l l a l A c  so 

that the J-1 first order conditions of the constrained maximisation problem in (8) then become5:  

                                                      
4 In the following, we use standard conventions for matrices, vectors and scalars, i.e. matrix names are always in bold 
capitals, vectors in bold non-capitals and scalars in non-bold. 
5 Differentiating (8) after inserting the quadratic functional form gives: 
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* * *totL= + + +% %l b Bp b Bc  (9) 

 

where 1 1 1 1, , , '− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − = − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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⎡ ⎤−
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p  all 

vectors being 2x1 and matrices 2x2. Like *l the *p -vector does not have an element corresponding 

to crop 3. B is symmetric (by the standard differentiability properties of the profit function and 

derived demands), homogeneity is maintained by normalisation so the eliminated crop 3 equation is 

obtained from residual calculation.   

 Equation (9) defines long run optimal land allocation as a function of adjusted gross margins and 

conditioning variables expected by the farmer to apply in the long run. To allow for slow 

adjustment to the optimal land allocation *l defined in (9), we assume a partial adjustment process, 

i.e.: 

 
*

1 1( )t t t t tV− −= + − +l l l l e  (10) 

 

where te  is a 2x1 vector of stochastic error terms and V  is a 2x2 diagonal matrix of adjustment 

speed parameters with values between zero and 1. 

 At time t, the farmer holds an expectation of the vector of adjusted gross margins that will apply 

in the long run optimum ( *
tp  where t indicates that this is the expectation held by the farmer at time 

t). We assume that current and previous year realised adjusted gross margins in a linear combination 

is an unbiased (though uncertain) indicator of this expectation, i.e. that  

 

 
*

1t t t t−= + +p Dp Dp q  (11) 

  
                                                                                                                                                                                

* *
*1 3

* *
2 3

( )
( ' ' )

( )
Z totP P

L
P P

⎡ ⎤−
+ + + + = ⇔⎢ ⎥−⎣ ⎦

%%P a A l a A C 0

1 1 * 1 1 'totL− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
%%l A a A p A a A A C   
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where tp  is the vector of adjusted gross margins realised at time t, D and D  are 2x2 diagonal 

matrices of parameters where = −D I D and tq  is a 2x1 vector of stochastic error terms. 1t−p  is the 

latest observed adjusted gross margin when period t land allocations are decided at the beginning of 

the growing season and so the indicator allows for static expectations. Inclusion of tp  allows for 

some element of quasi-rational expectations or predictive ability (see e.g. Burton and Love, 1996) 

since tp  is not observed at the time of land allocation (note that the D parameters are estimated and 

so D  may be zero). Given our data constraints, the assumed expectations model does not seem 

unduly restrictive.  

 At time t, the farmer also knows or predicts the vector of conditioning variables that will apply in 

the long run optimum. Here, we again assume that current and previous year realised values in a 

linear combination is an unbiased (though uncertain) indicator of this prediction/expectation, i.e. 

that  

 

 
*

1t t t t−= + +c Gc Gc w  (12) 

 

 where tc  is the vector of conditioning variables realised at time t, G andG  are 2x2 diagonal 

matrices of parameters and tw  is a 2x1 vector stochastic error term. Equation (12) allows for 

sluggish adjustment of optimal values of conditioning variables by letting the indicator depend on 

both their current level and growth rate. 

 Inserting (9), (11) and (12) in (10) gives the equation system to be estimated for each farm: 

 

 [ ] [ ]1 1 1
tot

t t t t t t t tL− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= + + + + + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
% % %l VBD p VBD p Vb VBG c VBG c I V l u

 (13) 

 

where [ ]t t t t= + − − %u Vb e VBq VBw  is a 2x1 vector of error terms and the square parentheses 

indicate the parameters to be estimated.  
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 In estimation, there is a set of equations (13) for each farm in the panel. We allow the vector of 

constants [ ]Vb  to be farm specific, while all other parameters are assumed to be common for all 

farms in the sample. However, a number of potential bias problems must be taken into account: 

First, since we condition on interior solutions for at least 5 consecutive years one might be 

concerned that this sample selection causes estimation bias. This does present a potential bias 

problem since e.g. small farms (with only a few plots that are efficient to farm separately) and farms 

with a small optimal average land allocation to certain crops more often will have years with zero 

crop growth because of crop rotation rules. We see this type of effect of the selection criteria since 

mainly big farms are selected. Addressing this problem through a standard sample selection 

approach such as Heckman (1979) would imply estimation of a vector of time invariant but farm 

and crop-specific Mills ratios that should be added to the equations of (13). Controlling for 

unobserved time invariant heterogeneity in this way would ensure consistent estimates for the 

selected sample. Of course, the model would then only apply to the selected panel farms not to the 

whole population of Danish farmers. 

 Second, the gross margin covariates tp  and 1t−p  and conditioning variables tc  and 1t−c  are 

components of errored indicators and therefore correlated with tu  requiring instrumentation.  

 Third, inclusion of the lagged dependant in (13) may also cause estimation bias if error terms are 

serially correlated also requiring instrumentation.  

 

To take account of these three potential bias problems efficiently, the unrestricted system (13) is 

estimated using the GMM-estimator suggested by Arellano and Bover (1995) and Blundell and 

Bond (1998). In the following we denote this estimator the GMM-diflev estimator6.  

Although, derived for single equation models the GMM-diflev estimator is easily generalised to 

handle multiple equations models exploiting the cross equation correlation to gain more efficiency. 

The standard econometric approach for linear dynamic panel data models is to first difference the 

equations to remove the unobserved permanent heterogeneity. This solves the first potential bias 

problem. Lagged levels of the covariates as instruments for the predetermined or endogenous 

covariates  solves in the second and third potential bias problems. 

                                                      
6 The estimator uses instruments in levels for first differenced endogenous variables and instruments in first differences 
for endogenous variables in levels 
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The first and second lag may be correlated with the error components in first differences so we 

use earlier lags. Each instrument, t sm − , for the covariates in the equations of (13) must satisfy the 

following two moment restrictions for the equation system in first differences of each farm: 

 

 ( )1 0        3;     4,5,...,t s t tE for s t T− −− = ≥ =⎡ ⎤⎣ ⎦m u u
 (14) 

 

In a conventional 2SLS framework, the instrument t s−m  can be the lagged levels of the covariates 

or the lagged differences of the covariates similar to an approach suggested by Anderson and Hsiao 

(1982). However, we can increase efficiency by exploiting the additional moment restrictions that 

are given in equation (13), i.e. by also using lags earlier than the third as instruments and by using a 

weight matrix that takes into account that tΔu  follow MA(1)-processes, if tu  are i.i.d. or that tu  

might be heteroscedastic. This is what the GMM estimator for single equations suggested by 

Arellano and Bover (1995) does and so this estimator may be viewed as a system of equations, one 

for each year, where the number of instruments increases for each year. Thus, in the equation for t-

=4, observations for t=1 may be used as instruments, while for t=5, observations for both t=1 and 

t=2 may be used.  

More efficiency is to be gained by also using the equations in levels with lagged differences as 

instruments with the following two moment restrictions for the equation system in levels of each 

farm (see Arellano and Bover (1995) and Blundell and Bond (1998)): 

 

 [ ] 0   2;     4,5,...,t s tE for s t T−Δ = ≥ =m u  (15) 

 

where t s−Δm is the lagged first differences of a covariate, which may be used as an instrument. Note 

that since we only use instruments in first differences with the levels equations, we do not 

reintroduce selection bias caused by the omitted Mills ratios. 

We use two types of weight matrices for the GMM estimators. One weight matrix takes account 

of the MA(1) structure of the first differenced disturbances and assumes no cross equation 

correlation and homoscedasticity. This estimator can be estimated in one step and thus is denoted 
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the one-step GMM estimator. The other weight matrix is consistent under heteroscedasticity and 

exploits all the cross-equation correlation both between disturbances of the same lag and between 

different lagged disturbances. This estimator uses the residuals from the one-step estimator to 

calculate the heteroscedasticity and cross-equation correlation consistent weight matrix after the 

same principle as in White (1980). The estimator is calculated in two steps and thus is denoted the 

two-step GMM estimator. Even though the two-step GMM estimator in theory is more efficient, 

Monte Carlo studies by Arellano and Bond (1991) indicate that the one step estimate of the 

covariance matrix and thus statistical inference is more reliable, so we report results from both 

estimators.  

As instruments for the equations in differences, we use the gross margins and the conditioning 

variables in third and higher lagged levels. Also, we use the land shares in third and higher lagged 

levels. For the equations in levels, we use these variables in second and higher lagged differences. 

Total land is instrumented with itself in both types of equations. As a general test of the validity 

(exogeneity) of the chosen set of instruments and lags, we apply the Sargan test of over-identifying 

restrictions for correlation between the residuals and the instruments (Arellano and Bond (1991)). 

We also test for second order serial correlation (denoted M2) as a specific indicator of the validity 

of the chosen instrument lag structure (also see Arellano and Bond (1991)). If the M2 test provides 

evidence of second order serial correlation in the first differenced residuals, this would indicate 

endogeneity of the third lag level in the difference equations and so e.g. indicate that farmer 

expectations are based on earlier lags than assumed in our model. Finally, a specific check of the 

modelled dynamics (the important lagged dependent variable parameters) is possible by estimating 

indicators of the upper and lower bounds on the true parameter values. An indicator of the lower 

bounds emits from the within groups transformed model using the seemingly unrelated regression 

estimator while treating all right-hand side variables as exogenous. This estimator is downward 

biased because the lagged dependent variable is negatively correlated with the error term. The 

lagged dependent variable parameter estimated in the dynamic model in levels is an indicator of the 

upper bound. This estimator is upwards biased because the lagged dependent variable is positively 

correlated with unobserved permanent heterogeneity that is dumped into the error term. However, 

in our case the estimated bounds may also be affected by bias ‘the wrong way’ because of the 

measurement error components in the error term and so should not be interpreted rigorously. 

 A number of other tests and checks of the estimated model can be derived. We expect parameters 

to the crops own gross margin to be positive 
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( [ ] [ ]1,1 2,21,1 2,2
0 ,0 ,0 ,0⎡ ⎤ ⎡ ⎤≤ ≤ ≤ ≤⎣ ⎦ ⎣ ⎦VBD VBD VBD VBD  and that the parameters to the lagged land 

shares are between 0 and 1 (i.e. [ ] [ ]1,1 2,2
0 1,0 1≤ − ≤ ≤ − ≤I V I V  ). It is also clear from (13) that 

two common factor restrictions: 

 

 
[ ] [ ]1, 2,1, 2,

/ /
i ii i
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦VBD VBD VBD VBD

for i=1,2  (16) 

 

should apply to the estimated system. Finally, the theoretical model implies symmetry of B which 

combined with the = −D I D  constraint emits the following restriction on the estimated 

parameters: 

 

 
[ ] [ ] [ ] [ ]1,2 1,1 2,1 2,21,2 2,1

( ) / ( ) /⎡ ⎤ ⎡ ⎤+ − = + −⎣ ⎦ ⎣ ⎦VBD VBD I V VBD VBD I V
 (17) 

 

which also should apply. The parameter restrictions (16) and (17) are implemented and tested using 

the Minimum Distance Estimator (e.g. Greene (2000)). 

 

5. Results 

In the first and second columns of table 3 we report parameters, standard errors, Sargan and M2 

correlation tests of system (13) estimated without restrictions (16) and (17) using the one and two-

step GMM estimator. The Sargan test of overidentifying restrictions is accepted and the M2 test 

statistic indicates no evidence of second order serial correlation and so the specification tests do not 

indicate endogeneity problems with the chosen set of instrument variables and lags. We see that the 

estimated parameters are almost equal for the two estimators and that many are significant. 

Specifically, parameters to the crops own gross margin are typically significant and with the 

expected sign. Some of the conditioning variable parameters are significant indicating that the 

estimated system is not separable from other farm production and that conditioning is necessary. 

Finally, both parameters to the lagged land shares (indicating the size of the adjustment time lag) 

are highly significant and within the required [0,1] bound. The winter crop parameter is also well 

within the estimated upper and lower bound indicators while the corresponding rape parameter 
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exceeds the upper bound slightly. However, the bound indicators are inaccurate in models with 

more than one measurement error and so this does not seem worrying7.  

Since parameters emitted by the two estimators are almost identical, but inference from the one 

step estimator is more reliable (as noted above), we base our tests of restrictions on this model. 

Parameter estimates and restriction test when imposing common factor restrictions (16) and when 

imposing both the common factor and the combined expectation and symmetry restriction (17) are 

reported in column 3 and 4 of table 3, respectively. We see that both the common factor restrictions 

and the joint common factors and expectation and symmetry restrictions are accepted. Consistent 

with this, most of the significant estimates of the restricted models are similar to the corresponding 

estimates of the unrestricted model. In conclusion, the model seems well specified, soundly 

estimated and consistent with the underlying theory. 

 In table 4 column 1 to 3, we present short and long run land allocation elasticities derived from 

the estimated parameters of the three models. Adjustment proportions ( [ ] ,
1

i i
− −I V ) indicate the 

proportion of the long run land allocation effect implemented each year (e.g. if the adjustment 

proportion is 1 we have immediate adjustment to optimum). The short run elasticities are defined as 

[ ] , ,
13 3

/ /
( ) ( )

( / ) ( / )
jt qt zt jt qt ztit it

i j i j
jt jt qt zt it qt zt itj j

dp P P dp P Pdl dl
dp dp d P P l d P P l−< <

⎡ ⎤+ = + ⎣ ⎦∑ ∑ VBD VBD  for i=1,2 and 

q=1,2,3 reflecting the first year effect on land share i of a permanent increase in the gross margin of 

crop q8. The long run elasticity is found by dividing the short run elasticity by the adjustment 

proportion and this elasticity reflects the land allocation effect after full adjustment9. Elasticities are 

                                                      
7 The estimated bounds on the parameter for the lagged winter crop land shares is [0.21;84] and the bounds on the rape 
and pea land shares is [1.6E-3;0.79]. 
8 Note that by the definition of *p  below equation (8) / ( / )jt qt ztdp d P P  equals 1 for (j,q)=(1,1) and (2,2), equals 0 
for (j,q)=(1,2) and (2,1), and equals -1 for (j,q)=(1,3) and (2,3).   
9 For the numeraire crop, 3 short run elasticities with respect to gross margin q are calculated residually (using the land 
share adding up condition) as: 

1 33 3

/
( )

( / )
jt qt ztit it

jt jt qt zt ti j

dp P Pdl dl
dp dp d P P l−< <

− + ⇔∑∑ [ ] , ,
33 3

/
( )

( / )
jt qt zt

i j i j
qt zt ti j

dp P P
d P P l< <

⎡ ⎤− + ⎣ ⎦∑∑ VBD VBD  

  

while the corresponding long run elasticity is 
[ ]

[ ]
, ,

33 3 ,

/
1 ( / )

i j i j jt qt zt

qt zt ti j i i

dp P P
d P P l< <

⎡ ⎤+ ⎣ ⎦
−

− −∑∑
VBD VBD

I V
. The average 

adjustment proportion for the numeraire crop can then be found by dividing the derived short run elasticity by the 
derived long run elasticity. 
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evaluated at the sample mean gross margins and land shares and the asymptotic standard errors are 

derived using the delta method. 

 First, we note that the estimated adjustment proportions vary substantially between crops 

from 0.48 for winter crops to 0.18 for spring rape and peas. The difference between these estimates 

is highly significant with the constant time lags restriction [ ] [ ]1,1 2,2
− = −I V I V being rejected 

strongly. The corresponding adjustment proportion for spring barley is 0.39.10 Thus, the 

adjustments for winter crops and spring barley are slow and very slow for rape and pea. Overall this 

indicates that crop rotation and other restrictions make fast adjustment to changes in the current 

gross margins difficult.  

 The elasticities are almost equal across the models. All the own gross margin elasticities are 

significant across all the models with the exception of the long run own gross margin elasticity for 

rape and pea in the model with all restrictions imposed. For all models, the long run own gross 

margin winter crops elasticity is about 2 and the short run elasticity is about 1 and for spring barley 

of about same magnitude (about 2.4 and 1.0). For rape and pea, the long run and short run 

elasticities exceed 2.3 and 0.4 in the unrestricted and common factor restricted models while 

dropping by about 40% in the most restricted model. Thus, short run elasticities vary substantially 

between crops, while long run elasticities end to be more aligned.  

 Turning to the cross gross margin results we see that most crops are substitutes. However, winter 

crops and rape and pea may be complements. Thus, the long run rape and pea elasticity with respect 

to the winter crops gross margin is 0.49 and the winter crops elasticity with respect to the rape and 

pea gross margin is 0.21 – both significant in the model with all restrictions imposed. 

 Figure 2 reports the development in the cumulated land share elasticity with respect to a 

permanent rise in the own gross margin at year 1. We see that already at year 2 the cumulated 

elasticities deviate a lot from short run elasticities. At year 6 winter crops have almost fully 

adjusted. Adjustment for rape and pea takes on the order of 15-20 years.  

Since data limitations in some cases rule out estimation of dynamic models, it may be of interest 

to compare results from the dynamic model estimated here with a corresponding static model esti-

mated on the same data set. We have estimated a static version of the model with instant adjustment 

to the optimal land allocation system (i.e. setting [ ] [ ]1,1 2,2
0, 0− = − =I V I V ). The estimated 

                                                      
10 The estimate is derived from the short run and long run spring barley gross margin effects on the spring barley land 
share. 
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elasticities are reported in table 4 column 4 to 6 and the parameter estimates in the appendix (table 

A1). As expected, specification tests indicate misspecification (see column 2 of table A1). It is, 

however, notable that the gross margin short run elasticities in the static model are similar to the 

corresponding short run elasticities derived from the dynamic model (see table 4). Thus, even 

though misspecified it seems that a static model is able to recover elasticity estimates that are close 

to the ‘true’ short run elasticities in our data set. In particular, this applies to the own gross margin 

elasticities. However, without knowledge of the adjustment lags that characterise the farmers in 

question it may still be difficult to use these estimates for evaluation of policy or price scenarios. 

This is illustrated in figure 2 where we see that cumulative land allocation elasticities after just 2-3 

years differ by a factor 2 from the first year short run elasticities that may be recovered by a static 

model. Further, it is notable that because of difference in adjustment speeds, short run elasticities do 

not even give an accurate picture of ratios between crop elasticities after a few years. After 3 years 

some ratios have changed by about a factor 2.  

 

6. Conclusion 

Using a long micro panel with crop level data on acreage and gross margins, we estimate a dynamic 

model of land allocation that takes account of all the major causes of land allocation lags (expecta-

tions adjustment, investment lags and crop rotation because of pest/disease considerations and 

nutrient carry over). The identifying assumptions do not seem overly restrictive and the empirical 

model seems soundly estimated and consistent with the underlying theory. 

We find substantial differences between short and long run land allocation effects and also 

substantial differences in the adjustment speeds estimated for different crops. For rape and pea, we 

find a short run land allocation elasticity with respect to its own gross margin in the order of 0.25 

while the corresponding long run elasticity is in the order of 1.4. For winter crops like barley and 

wheat, the corresponding elasticities are 1.0 and 2.1 respectively, and for spring barley 1.0 and 2.5 

respectively. Time lags vary substantially between crop with first year effects ranging from 18% 

(for rape) to 48% (for winter barley and wheat) of long run effects.  

This suggests that taking long run effects and time lags into account may be crucial when 

estimating and analysing policy effects on land allocation behaviour. This also suggests that even if 

a static model is able to recover short run (first year) elasticity estimates (as is the case in our data 

set – to some extent) use of these for policy and price scenario evaluations should be done with 
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great caution since cumulative elasticity levels and ratios have changed substantially after just 2-3 

years.  
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