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Abstract

We suggest a market design for rapid demand response in electricity markets.
The solution consists of remotely controlled switches, meters, forecasting models
as well as a flexible auction market to set prices and select endusers job by job.
The auction market motivates truth-telling and makes it simple to involve the
endusers in advance and to activate demand response immediately.

The collective solution is analyzed and economic simulations are conducted
for the case of Kenya. Kenya has been suffering from unreliable electricity
supply for many years and companies and households have learned to adjust
by investments in backup generators. We focus on turning the many private
backup generators into a demand response system.

The economic simulation focuses on possible distortion introduced by various
ways of splitting the generated surplus from the demand response system. An
auction run instantly as the Transmission System Operator (TSO) requests
demand response and the winning endusers are disconnected immediately if the
TSO accepts the result of the auction. The endusers are compensated with a
uniform auction price job by job and the Aggregator receives part of the surplus.

The simulation captures the nature of the demand response system and re-
veals that a simple markup contract between the Aggregator and the TSO is
sufficiently flexible and little distorting. The simulation also provide a the less
intuitive result, that the auction motivates the TSO to offer a high markup con-
tract to the Aggregator to motivate a large pool of demand response. We discuss
how this may motivate the alternative owner structure where the Aggregator is
a cooperative owned by the endusers themselves.
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1. Introduction

Balancing demand and supply of electricity on a real time basis is an in-
creasing global challenge. The increasing uptake of uncontrollable renewable
energy makes this balancing more challenging and hence requires more flexible
consumption or backup production capacity ([15] and [18]). Furthermore, in
developing countries economic growth may also be hampered by less developed
electricity systems and markets. In this paper, we suggest a market solution for
rapid demand response that may be part of the solution whether the problem
stems from renewable energy and/or less developed electricity systems.

In particular, we consider the case of Kenya which has both an impressive
economic growth and a high degree of renewable energy that makes regulating
and balancing of the electricity system more challenging. In Kenya, like many
other developing countries, companies and households have learned to adjust to
the frequent outages, most prominent by investments in backup generators. De-
spite very ambitious development plans for the entire electricity system ranging
from production to transmission and distribution, trajectories of future demand
and supply of electricity suggest potential imbalances in both the short and the
long run. Part of the solution for more stable power supply may be increasing
Demand Response (DR). In this paper we describe a DR system and market
institutions that aim at including DR to reduce on-grid demand in periods with
imbalances on the grid. The sources for DR may be the existing off-grid backup
generators (which is the primary use case in this paper), intelligent control of
cooling and heating systems, street lighting, etc.

The technical solution consists of remotely controlled switches and meters.
Together with forecasting systems, the meters can predict the available DR.
The installations may be an entire firm (or household) that is backed up by a
private generator or partial installations within a firm (or household) that may
be disconnected without large consequences for shorter periods of time such as
a cooling house.

The suggested market solution is a DR system managed by an Aggregator
institution that signs contracts with endusers supplying DR as well as managing
the DR as it is requested by the Transmission System Operator (TSO)1. The DR
contracts work like an option where the enduser sets a minimum compensation
and the Aggregator holds and sells the option to the TSO and exercises it on
request. To our knowledge, there is no well-established market for DR in Kenya
to date. Therefore, we suggest an auction market for pricing the requested DR
jobs. The stated minimum compensation levels enter the auction as bids on the
incoming DR jobs requested by the TSO. The auction provides incentives for
the participants to tell their true minimum compensation a priori, as they sign
up for a DR contract. Hereby, the suggested auction allows for optimal price
and quantity coordination with limited enduser involvement.

1Depending on the way the electricity market is organized, it may also be the Distribution
System Operator (DSO) that request DR. In the case of Kenya, as of 2014, Kenya Power is
both the TSO and DSO.
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The aggregator may be an independent private organization or a public
organization (e.g. as an integrated part of Kenya Power). For the most part
of the paper, we will consider the Aggregator to be an independent private
organization owned by external investors. Later, we consider the case where the
Aggregator is owned by the endusers supplying DR.

Based on limited information about the nature of the DR jobs and the en-
dusers, the collective solution is analyzed and an economic simulation is done for
the case of Kenya. The economic simulation focuses on the distortion introduced
by various ways of pricing the DR as well as the nature of the auction solution.
The endusers are compensated by the Aggregator with a uniform price job by
job settled by the auction. We analyze three different surplus splitting contracts
between the Aggregator and the TSO: A lump sum payment, a fixed price per
kWh and a markup price type of contract. While the fixed price contract is too
distorting, the simulation indicate that a markup contract is sufficiently flexi-
ble. A markup contract is easy to implement and probably the most preferred
choice since it requires little a priori negotiation. The simulation also reveals
how the competition introduced by the auction market, creates misalignment
between the endusers, the Aggregator and the TSO in terms of increasing the
pool of endusers. With markup contracts, the TSO may offer the Aggregator a
high markup to motivate a large number of endusers, which will result in lower
prices for DR. We discuss how this may motivate the alternative owner structure
where the Aggregator is a cooperative owned by the endusers themselves.

The outline of the paper is as follows: Section 2 relates the paper to the
existing literature and Section 3 introduces the proposed DR system. Section 4
provides the economic institutions and the suggested auction solution. Section
5 introduces the simulation framework and the results are presented in Section
6. Section 7 concludes.

2. Relation to the literature

Adequate, affordable and reliable supply of energy is considered crucial for
economic growth and societal development and conversely erratic supply and
inadequate infrastructure is a hindrance [5] and [17]. Reliable energy supply
is believed to have strong effect on private investment and improves local busi-
ness competitiveness [1]. Eberhard and Shkaratan [5] uncover that Sub-Saharan
Africa countries, one of which is Kenya, face critical power problems including
insufficient connectivity, poor reliability and high costs which all together con-
strain development. However, let alone the generally low access rate, reliability
of electricity supply is a daunting problem in economies like Kenya where both
scheduled and unplanned outages and power fluctuations are common. Accord-
ing to Eberhard and Shkaratan [5], due to frequent outages and undersupply
of electricity, own generation constitutes significant proportion of installed ca-
pacity, that leads to the use of costly emergency power. Partly due to erratic
functioning of public supply of energy, evidence indicates that in Sub-Saharan
Africa own generation (with a recently increasing trend) accounts for 6% of
installed capacity, the share ranging up to 20% in low income countries of the
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region [8]. The overall implication is that unreliable electricity has serious im-
plications some of which are increasing business uncertainty, increased cost of
production, reduced competitiveness, lower domestic investment and foreign di-
rect investments, which ultimately retard economic growth and development.

Eberhard and Shkaratan [5] argue that the main channel through which de-
ficient power infrastructure and unreliable energy supply constrains economic
growth is due to its harmful effect on business productivity. For firms, unex-
pected power outages inflict other costs such as foregone sales and equipment
damage, higher maintenance cost, switching costs, restart cost, lost man hour
and spoilage of some production over and above the need to have standby power
source 2. Added to the higher cost of operating own generator, these extra costs
reduce the quality and competitiveness of products and services undermining
the return on investment [12]. In practice, it is not easy to measure and verify
costs associated with unexpected blackouts.

Increasing and stochastic demand for electricity, costly investment in infras-
tructure, environmental concerns, and temporary demand peaks, among others,
make it difficult to ensure reliable supply only through supply side interventions.
This calls for innovative management of demand side resources [19]. Activating
consumers to adjust their electricity consumption behavior through price signals
and/or incentivized contracts would improve market efficiency and system relia-
bility besides reducing consumers’ power bills ([13], [11] and [7]). Moreover, with
active involvement of endusers, demand side management reduces the need for
costly spinning reserves [16]. This helps to avoid or postpone the construction
of new generation units and grid expansion, and reduces greenhouse gas emis-
sions thereby contributing for environmental and social improvement. Besides,
effective load management with smart technologies would reduce transmission
and distribution losses.

According to Ramini and Ipakchi [13], a well-designed and correctly im-
plemented DR, promotes market efficiency and operational reliability even with
increased profusion of variable generation. For effective implementation of smart
demand response, a set of accompanying technical solutions such as smart grids,
remote switches, prediction/forecasting models, programmable implements on
enduser premises are crucial. Besides the technical solutions, other factors in-
cluding geography, consumer awareness, market institutions and regulatory en-
vironment matter for the success of such programs.

Though advances in communication technology and metering have height-
ened the potential of demand response, the development of appropriate business
model has been a critical challenge in actual implementation and exploitation
of this promising load management system [11]. Large scale involvement of en-
dusers in demand management programs can be organized by aggregators [10].
Ikheimo et al [9] identified four main drivers for the increasing demand for DR
aggregators: increasing concern for electricity emissions, increasing distributed
and variable electricity generation (e.g., wind electricity), increasing role of elec-

2See e.g. the UMEME enduser study [6].
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tricity, costly nature of electricity generation facilities and cost effectiveness of
demand side flexibility compared to supply side response.

Notwithstanding the fact that load aggregation offers several benefits, there
is no clear cut agreement in literature as to who does the aggregation in a
better way. DR aggregation can be administered by electricity distributor [9].
However, in practice, distributional concerns that the benefits accruing from
DR have disproportionately gone to the utilities than consumers, has given
rise to new business model relying on a third party Aggregators3. Ikheimo
et al [9] summarized the main functions of a load aggregator as: to collect
customer demand flexibility and provide access to the market and offer resources
to market, collect requests and respond to them in an optimal way. From a case
study on the Texas electricity market, [4] finds that management of residential
air conditioning systems helps to shift peak electricity demand though total
electricity consumption was increased due to the program. According to Ikheimo
et al [9], a DR system which encourages both automated DR technology and
involvement by third party Aggregators will result in efficient, low cost load
reductions that are going to be profitable for all stakeholders.

3. The Rapid Demand Response System

The rapid DR system consists of three components:

• A monitoring and prediction system that maps available DR (from the
endusers with a DR contract) on the electricity grid.

• Remotely controlled switches that can activate the DR immediately if
necessary.

• Market institutions (e.g. contracts and price-setting mechanisms) that
provide sufficient incentives for endusers to participate

The DR system is managed by an Aggregator institution that signs con-
tracts with the endusers supplying DR. Meters and switches are installed at the
endusers’ premises and the consumption profile is estimated using forecasting
models. The entire predicted consumption is mapped on a power grid and of-
fered as DR to the TSO on immediately request. The Aggregator may be an
independent private organization or a public organization (e.g. as an integrated
part of Kenya Power).

An extensive user study carried out as part of the UMEME 24/7 project,
indicates that the viable solution is to organize the endusers by a private orga-
nization that trades with Kenya Power [6]. The endusers indicate lack of trust
in Kenya Power and that the endusers need to negotiate with Kenya Power as
a group. Also, Kenya Power indicated the need for an institution to manage

3See https://sites.google.com/site/adscsmartgrid/incentive-pricing/demand-response (I
cannot open link - most be a better way to ref or different ref)
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the collective DR service4. Throughout the paper, we therefore consider a sup-
ply chain with a private Aggregator that signs contracts with endusers and the
TSO.

We will primarily assume that the private Aggregator is investor owned and
in parallel discuss the alternative owner structure where the Aggregator is owned
collectively by the endusers themselves as a cooperative.

4. The Economic Institutions

We first consider the procurement situation and then introduce the auction
market.

4.1. The Procurement Situation

We consider a procurement situation with a TSO that demands DR in kWh
(DD) and a number of endusers that Supply DR in kWh (SD). Prior to that,
we assume that the Aggregator (or market maker) has signed a framework
agreement with N endusers and that the expected DR for each enduser has
be constructed and made available by meters and remotely controlled switches.
Hereby, we effectively assume that the DR from enduser i is verifiable5.

More formally, assume that a risk neutral principal (the TSO) seeks to pro-
cure y kW DR for a time period of t hours or simply DD kWh6 from one or
more of N risk neutral endusers with a DR contract (this we will refer to as
a ”job”). The particular job may be local or global meaning that the set of
eligible bidders that can actually solve the job may be less than N .

We assume that endusers (the agents) with a DR contract have a backup
generator that can produce sufficient electricity to maintain their electricity con-
sumption. We presume that the marginal cost of running a private generator
(ci) is constant but higher than the on-grid price for electricity pon. With a
uniform compensation (settled by a uniform price auction job by job) and con-
stant marginal costs, the minimum compensation is independent of the length
of the job7. We assume throughout the paper that the aim of the enduser is to
maximize (expected) surplus from participating in a given job:

πi = SDi(p̂− (ci − pon)) (1)

Where SDi is i’s supply of DR in kWh, p̂ is the compensation paid to the
enduser per kWh and pon is the on-grid price for electricity during a job.

4Note that the suggested organization does not prevent the Aggregator from having Kenya
Power to handle the actual billing based on information from the Aggregator, as suggested by
some of the interviewed stakeholders [6].

5Manipulation of the consumption profile seems unlikely or equivalently assume that trust-
worthy metering can be costlessly enforced e.g. by a harsh penalty for deviations.

6The length of the job (t) is not known a priori.
7The UMEME enduser study support this assumption for jobs of a duration of a few hours

[6]. For a job of longer duration, the operation costs may increase.
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By assumption, DR is verifiable for each enduser i. Thus, possible strategic
manipulations by the endusers only regard the cost, and the signal from each
agent i is a quantity-price bid, (yi, xi), with the interpretation that if agent i is
disconnected, the system demand load will drop with yi kW if enduser i is paid
at least xi per kWh. By assumption, the endusers consume the same amount of
electricity whether he is selected to startup his own generator or stays on-grid,
therefore, the minimum price-bid is the difference between the on-grid price of
electricity pon and the private cost ci.8

The Aggregator signs a contract with the TSO (the principal) that state
a price p̂TSO per kWh of DR. We consider three different pricing schemes (or
surplus splitting contracts):

Lumpsum contract: The Aggregator and the TSO negotiate a lump sum pay-
ment a priori and TSO pays the uniform price settled by the auction,
p̂TSO = p̂.

Markup contract: The Aggregator and the TSO negotiate a percentage markup
(α) to paid on top of the uniform price settled by the auction, p̂TSO =
(1 + α)p̂.

Fixed price contract: The Aggregator and the TSO negotiates a fixed price
(p̄) per kWh, p̂TSO = p̄.

In all cases the Aggregator compensates the enduser with uniform price settled
by the auction. Hereby, we assume throughout the paper that the aim of the
Aggregator is to maximize (expected) surplus from a given job:

πAggregator =
∑

i∈ñ

SDi(p̂TSO − p̂) (2)

where SDi is i’s supply of DR in kWh and ñ is the endusers that won the
auction and then compensated with p̂ per kWh.

Finally, the objective of the TSO (the principal) is to maximize (expected)
surplus from a given job:

πTSO =
∑

i∈ñ

SDi(p̄TSO − p̂TSO) (3)

where SDi is i’s supply of DR in kWh and ñ is the endusers that won the
auction and then compensated with p̂ per kWh. The TSO accepts only DR if
p̄TSO ≥ p̂TSO.

The TSO’s request is a quantity-price bid, (yTSO, p̄TSO), with the interpre-
tation that the TSO’s willingness to pay is p̄TSO for a drop in system demand
of at least yTSO kW.

8Assuming that the auction promotes truth-telling as argued below, the optimal bidding
depends on the on-grid price and the cost of operating the backup generator. In practice the
on-grid price is observable and most likely fixed during a job and one may allow the endusers
to express their required compensation hour by hour as known from power exchanges.
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4.2. The auction market

Multi-unit auctions are widely used on electricity markets both for physical
as well as financial electricity related products. The central component of a typ-
ical electricity market involves a double auction that mediate between multiple
buyers and sellers. However, with a single buyer (the TSO) representing the
supply side one-sided auction is the most relevant auction institution.

The literature on one-sided multi-unit auctions distinguishes between uni-
form price auctions and discriminatory auctions. In the former, all trade is
done at the same price whereas in the later buyers pay the price they bid for
each quantity. In particular the use of discriminatory prices in the US treasury
auctions has been widely discussed in literature. The literature tends to favor
uniform price auctions. However, when market power is introduced, multi-unit
uniform price auctions do not have the same truth revealing properties as single-
unit second price auction [2]. In a uniform price auction the bidders can use
their market power to reduce the price on the auction by reducing their demand.

In a DR auction the quantity is the expected drop in electricity consumption.
Meters monitor endusers’ consumption and the estimated consumption profile
is the quantity entering the auction. Therefore, any strategic demand reduction
requires manipulation of the consumption profile, which requires persistent de-
viation from otherwise optimal consumption (assuming trustworthy meters and
estimation of consumption profiles). This rules out strategic bidding and makes
the endusers de facto price takers.

In an optimal multi-unit auction, each participant is given the opportunity
to submit multiple bids for buying or/and multiple asks for selling in order to
communicate a complete demand or supply scheme9. In case of DR, it might
be that an enduser will switch-off the entire firm or just a subset of the firm’s
installations which may impact the required minimal compensation. Also, the
minimal compensation may change from hour to hour do to changes in costs of
operating the backup generator at different capacity levels.

Formally, consider a one-sided uniform price auction with a large number
of endusers each submit a well-defined supply scheme represented by a set of
quantity-price bids (y1, x1), (y2, x2), . . . , (yL, xL). Where yl is the DR enduser i
offers for sale at xl. In this general representation, the supply scheme consists
of L bids, one for each of the L possible bid prices. The supply scheme is
assumed to be monotone in the price. That is, for any two prices ph and pl
where ph ≤ pl we have yh ≤ yl, i.e., a seller will supply at least the same when
the price increases.

On the other side of the market the TSO requests DR by submitting a single
price-quantity bid (yTSO, p̄TSO), where yTSO is the minimum quantity required
to solve the imbalance and p̄TSO is the maximal price that the TSO is willing
to pay. The TSO’s reservation price is bounded by the cost of alternative ways
to solve the imbalance e.g. by disconnecting parts of the grid or increase the
production of electricity one way or the other.

9For a detailed discussion of the importance of allowing multiple bids and asks, see [3]
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Now the aggregated supply is found by summing up the supply for each
feasible market clearing price. Let n be the number of endusers (sellers) that
can potentially be activated during a DR event and j be the associated counter.
For any market clearing price pl , l = 1, 2, . . . , L, the aggregated supply is
ASpl

=
∑n

j=1 y
j
l .

We will assume that the imbalance problem is solved only if the full request
is meet. Therefore the market clearing price is the lowest price that ensure
the smallest positive excess supply, where excess supply is defined as Zpl

=
ASpl

− yTSO, ∀l = 1, 2, . . . , L. All trades are executed at the uniform market
clearing price p̂ = argminpl,l=1,2,...,L{Zpl

| Zpl
> 0}.

Since the sellers have committed to supply DR at prices exceeding their
respective stated minimum compensations and since meters and remotely con-
trolled switches have been installed, the DR can be delivered immediately.

The auction rules:

Step 0: The endusers submit quantity-price bids (yi, xi) stating the minimum
compensation (xi) required to disconnect i and the DR in kW (yi).

Step 1: The TSO requests yTSO kW for an unknown period of t hours.

Step 2: The n ∈ N endusers that can solve the job enters the auction auto-
matically.

Step 3: The Aggregator solve the uniform price auction and settle the smallest
uniform price p̂ that result in the smallest excess supply of DR relative to
the requested yTSO kW.

Step 4: The Aggregator computes the p̂TSO and the TSO accepts all offers
below p̄TSO

Step 5: The selected endusers are disconnected for a period of t hours.

Step 6: The selected endusers are compensated with p̂ per kWh for all yi · t
kWh at the end of the job.

This auction market turn the traditional intraday auction market (or ca-
pacity market) upside down by pre-organizing the DR capacity and make it
accessible and hereby allowing the TSO to request jobs i.e. run an instant
auction to solve an incoming job.

This approach has similarities with different auction markets such as the so-
called AdWords auctions (also known as position auctions) where the prices for
sponsored links primarily on Google and Yahoo are settled by an instant auction
as a user clicks on a sponsored link, see e.g. [14]. Like AdWords auctions, the
endusers submit preferences in advance and an auction is conducted instanta-
neously as the TSO requests DR. The incentives to bid truthfully together with
the simple operational cost structure of running a generator, makes it possible
to articulate preference a priori in a simple and manageable way.
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As explained earlier, the system does not allow the endusers to exercise any
market power for multiple reasons: 1) the quantity is a consumption profile
estimated over a longer period of time, 2) there is a larger number of endusers,
3) the endusers may randomly participate in many different auctions (jobs).
For these reasons we assume that the endusers’ minimum compensation (xi) is
equal to their reservation price (pi).

On the other side of the market, the TSO is the only buyer of DR and as
such a monopsonist. Nevertheless, we argue that this natural market power is
not a problem for the suggested market design. If the TSO successfully utilizes
its market power, then the social welfare decreases. Therefore, the TSO as
social planner has no incentives to exercise market power. On the other hand,
if the TSO maximizes its private profit, reducing the requested DR may reduce
the market clearing price. In principle, the TSO may iteratively change the
requested DR and exploring different market clearing prices. However, the very
reason for requesting DR is to solve a critical problem, therefore, it is unlikely
that the TSO will exercise its market power and buy less. If the TSO has a
cheaper alternative, then that is of course preferred to the TSO and reflected in
the TSO’s reservation price (p̄TSO).

5. The simulation framework

Based on the market solution presented in Section 4 we now introduce a
simulation framework that allows us to analyze the economic outcome. The
primary focus is the nature of the suggested auction market and the choice of
the surplus-spitting between the three players; the endusers, the Aggregator
and the TSO. The absolute magnitude of the numbers merely serves as a first
indication of value added by the suggested DR system.

The applied simulation compensates for the lack of detailed information
about the two primary inputs: 1) the distribution and nature of the DR jobs
and 2) the distribution and nature of the available DR. Aggregated information
about overall system demand, literature studies as well as collected information
from two rounds of user surveys in Kenya are used to set likely priors in order
to randomize and simulate various scenarios [6].

The simulation captures ”a day” divided into h periods (h = {1, 2, 3, 4}),
which reflects the system demand presented in appendix A:

• h = 1 low demand (22:30 to 4:30)

• h = 2 increasing demand (4:30 to 9:30)

• h = 3 high demand (9:30 to 18:30)

• h = 1 peak demand (18:30 to 22:30)

The simulation considers a single DR job in each of the h periods with
a duration of one hour. Hereby, the simulation mimick a day consisting of
4 jobs of one hour each. To derive yearly numbers, this ”simulated day” is
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simply multiplied by 50. These numbers are supported by Enterprise Surveys
conducted by the World Bank in 2007 and 201310. The survey from 2007,
reports on average seven power outages in a typical month in Kenya with average
duration of 3.1 hours. The more recent survey from 2013 reports a modest
reduction in the number of average electrical outages. However, the average
duration of outage in a typical month has rised to 4.9 hours. This was also
reflected in about 86.7% (3% in 2007 to 5.6% in 2013) increase in loss due to
outages as a percentage of annual sales. Relative to the statistics from the 2007
survey, proportion of firms having or sharing a generator has rised by about
74.77% (from 32.5% to 56.8%) in 2013. In both enterprise surveys unreliable
electricity was remarked as a major impediment for large firms relative to small
and medium sized firms. Perhaps because many businesses have heavily invested
in backup generators, the percentage of firms identifying electricity as a major
constraint has declined by about 41% (38.9% in 2007 to 22.9% in 2013).

For each of the four periods a different set of upper and lower bounds about
the jobs and the endusers to solve them is settled. The TSO’s Demand for
DR (DD) is measured in MWh11 and the associated reservation price p̄TSO

are independently drawn from a uniform distribution according to Table 1.
Likewise, the endusers’ supply of DR (SD) and the associated minimum bidding
price pi is independently drawn from a uniform distribution as shown in Table
1.

The simulation capture different scenarios for the total number of endusers
N = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} that hold DR con-
tract with the Aggregator12. To reflect the situation that not all of the N
endusers would be needed to solve a given job, n endusers that can solve a
given job is selected as follows:

• In 50% of all cases n = N (a global imbalance problem)

• In 50% of all cases n is selected as a fraction reflecting the relative size of
the job as follow (a local imbalance problem):

– IfDDh/DDh,max < 0.25 then n ∈ U(0.05N ; 0.195N) for h = {1, 2, 3, 4}

– If 0.25 ≤ DDh/DDh,max < 0.25 then n ∈ U(0.05N0.195N) for
h = {1, 2, 3, 4}

10In number of outage hours the rough estimate of 50 times the simulated 4 jobs, is approx-
imately 29% less than the results in the 2007 World Bank survey. The UMEME project has
not been able to collect more precise numbers on the actual outages.

11The time period for a given DR job (t) is left out since all simulated jobs last one hour
each.

12Current statistics shows that as of 2014, there are a total of about 126,000
businesses registered in Kenya with annual business entry rate of about 5%
(http://www.tradingeconomics.com/kenya/total-businesses-registered-number-wb-
data.html). The 2007 World Bank Enterprise Survey reports that about 65.7% of
manufacturing firms included in the survey own or share backup generators and the similar
2013 Enterprise Survey reports a significant increase in the number of firm having backup
generators in general. On this basis we assume that it is reasonable to consider 600 firms
signing a DR contract with the Aggregator.
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– If 0.5 ≤ DDh/DDh,max < 0.75 then n ∈ U(0.15N0.75N) for h =
{1, 2, 3, 4}

– If 0.75 ≤ DDh/DDh,max < 1 then n ∈ U(0.4N ;N) for h = {1, 2, 3, 4}

In each simulation round 4 jobs are drawn (one for each of the h periods)
and the n endusers that can help solving the job is created.

Table 1: Simulation framework

Scenarios Jobs TSO) Endusers

LOW Quantities DDh=1 ∈ U(0.01; 10) SDh=1 ∈ U(0.01; 0.4)
DDh=2 ∈ U(0.01; 20) SDh=2 ∈ U(0.01; 0.6)
DDh=3 ∈ U(0.01; 35) SDh=3 ∈ U(0.01; 0.8)
DDh=4 ∈ U(0.01; 50) SDh=4 ∈ U(0.01; 1)

Prices pTSO,h=1 ∈ U(8; 32) pi,h=1 ∈ U(5; 30)
pTSO,h=2 ∈ U(8; 32) pi,h=2 ∈ U(5; 30)
pTSO,h=3 ∈ U(10; 40) pi,h=3 ∈ U(5; 30)
pTSO,h=4 ∈ U(10; 40) pi,h=4 ∈ U(5; 30)

MEDIUM Quantities DDh=1 ∈ U(0.01; 10) SDh=1 ∈ U(0.01; 0.4)
DDh=2 ∈ U(0.01; 20) SDh=2 ∈ U(0.01; 0.6)
DDh=3 ∈ U(0.01; 75) SDh=3 ∈ U(0.01; 0.8)
DDh=4 ∈ U(0.01; 100) SDh=4 ∈ U(0.01; 1)

Prices pTSO,h=1 ∈ U(8; 32) pi,h=1 ∈ U(5; 30)
pTSO,h=2 ∈ U(8; 32) pi,h=2 ∈ U(5; 30)
pTSO,h=3 ∈ U(10; 40) pi,h=3 ∈ U(5; 30)
pTSO,h=4 ∈ U(10; 50) pi,h=4 ∈ U(5; 30)

HIGH Quantities DDh=1 ∈ U(0.01; 30) SDh=1 ∈ U(0.01; 0.4)
DDh=2 ∈ U(0.01; 70) SDh=2 ∈ U(0.01; 0.6)
DDh=3 ∈ U(0.01; 110) SDh=3 ∈ U(0.01; 0.8)
DDh=4 ∈ U(0.01; 150) SDh=4 ∈ U(0.01; 1)

Prices pTSO,h=1 ∈ U(8; 32) pi,h=1 ∈ U(5; 30)
pTSO,h=2 ∈ U(8; 32) pi,h=2 ∈ U(5; 30)
pTSO,h=3 ∈ U(10; 40) pi,h=3 ∈ U(5; 30)
pTSO,h=4 ∈ U(10; 50) pi,h=4 ∈ U(5; 30)

Figure 1 below illustrates a simulation round. It starts by drawing a job
(yTSO MW DR requested by the TSO), then the n endusers that can solve
the job is drawn (yi MW DR and the minimum reservation price pi) and the
TSO’s reservation price (p̄TSO) is drawn. With this input in place, the auction
is solved with respect to the job, the available DR and the TSO’s reservation
price. Since the contract that splits the surplus between the Aggregator and
the TSO influences the price that the TSO meet, it also influences the outcome
of the auction. To capture this, a simulation round computes different auctions
results reflecting the three different types of surplus splitting contracts.
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Figure 1: A simulation round with results from the 8 different surplus splitting
contracts and the h = 4 different periods.

6. The simulation results

In this section we present selected sets of simulation results. As mentioned
above, the simulated results are multiplied by 50, as a best guess to reach yearly
numbers. All monetary numbers are reported in Kenyan Shillings (KES)13.

The simulation captures the nature of the incoming DR jobs and how these
jobs are priced with the suggested auction market. On one hand, the absolute
numbers are only a rough indication of the potential surplus that can be gen-
erated by the DR system. On the other hand, the numbers provide insights
into the nature of the DR system and the potential distortion from various con-
tracts with the TSO as well as competition between the endusers created by the
auction market.

The following set of results have been computed for the 3 main scenarios
(Low, Medium and High):

Solved jobs: The average percentage of requests by the TSO meet 100% by
the DR system.

Quantity of DR: The average number of MWh of DR bought by the TSO.

13By November 12. 2013, one US dollar equals 85.75 KES.
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Surplus generated: The average surplus to the 3 players involved in the DR
program plus the sum of the surplus from the endusers and the Aggregator
(the Coop).

Number of endusers activated: The average number of endusers with a DR
contract that has been activated during a DR job.

All results depend on the choice of surplus-splitting contract between the
Aggregator and the TSO. The above set of results were computed for 3 types
of contracts (in total 8 different contracts):

Lump sum contract: A non-distorting 50/50 surplus splitting contract.

Markup contract: 5 different markup contracts that leave the Aggregator
with respectively 10, 20, 30 , 40 or 50 % of the market clearing price on
the auction.

Fixed price contract: Two fixed price contracts that fix the price paid by the
TSO to 15 or 25 KES/kWh.

In the following we provide a selected set of these results.
The first observation is that the fixed price contracts are not sufficiently

flexible to handle the changing nature of the incoming DR jobs as well as the
diversity of endusers that may solve the jobs. Too high fixed prices make the
TSO accept less DR and too low fixed prices leave the Aggregator with a deficit.

While the lump sum contract avoids distortion, it requires a difficult negoti-
ation about the size of the actual lump sum paid to the Aggregator prior to the
realization. We assume that the surplus to the TSO given the market clearing
prices settled by the auction, is split 50/50 between the TSO and the Aggre-
gator. This is clearly a very strong assumption not least because the TSOs
reservation price is private information and that the TSO has no incentives to
share this information. In a repeated negotiation about the size of the lump
sum payment, the TSO will learn the price of DR by the auction market unlike
the Aggregator that only observe whether the TSO accept or reject prices and
not the actual reservation prices. For these reasons, we will mainly consider
the lump sum contract as a benchmark and it appears as such in Figure 2.
As one would expect, the percentage of jobs solved with lumpsum contract is
consistently higher than that of the other contracts.

The markup contract is sufficiently flexible. Unlike the fixed price contract,
the Aggregator is always left with a positive surplus and the distortion is limited
though increasing as it follows the market clearing prices settled by the auction
market. Relative to a lump sum contract the turnover drops in the high scenario
with around 5% in case of 350 contract holders (N = 350) and a 10% markup
contract. With a 30% markup contract, the turnover drops with 14% relative
to a lump sum contract and with 23% for a 50% markup contract. For medium
and low scenario these relative numbers are smaller.

In Figure 2 we have the aggregated surplus in 1000 KES for the endusers,
the Aggregator and the Coop (the endusers and the Aggregator collectively) as

14
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Figure 2: The surplus generated with different surplus splitting contracts, di-
vided into the different economic agents: The endusers, the Aggregator, the
Coop (the endusers and the Aggregator collectively) and the TSO.

well as the TSO. The surplus is plotted against N the size of the Aggregator in
terms of members with a DR contract. All results are from the medium scenario
in Table 1.

Starting with the endusers in Figure 2, the plot clearly show the competition
introduced by the auction. For a low number of endusers additional endusers in-
creases the aggregated surplus simply because more auction results are accepted
by the TSO and more jobs solved. At some point, the competition between the
endusers decreases the aggregated surplus. The auction enhances this compe-
tition such that the DR jobs are solved at cheap as possible. The plots also
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picture the distortion introduced by the different surplus splitting contracts. At
the top is the lump sum contract where the TSO is facing the auction price and
no distortion is introduced. For the 3 markup contracts, the distortion increases
as the TSO is charged an increasing price i.e. the endusers prefer a low markup
contract.

For the Aggregator in Figure 2, the plot shows that the surplus from the
markup contracts follows the auction prices and that it increases as the markup
increases, i.e. the Aggregator prefer a high markup contract. Also, compared
with the endusers the preferred number of contract holders is a little larger - the
turning point of the curves are a little further to the right. Finally, the lump
sum contract indicate that the DR system add additional values beyond 600
members.

The plot for the Coop in Figure 2 combines the endusers and the Aggregator.
As illustrated by the plot and discussed further below, the coop will improve
the alignment of the three agents. In other words, if the endusers own the
Aggregator, the Aggregator and the endusers will jointly prefer a high markup
contract.

Finally, the plot for the TSO in Figure 2 illustrates that the DR system
add additional values beyond the 600 members. At first, it seems that the
TSO would prefer a low markup contract. Though, less intuitive, the TSO
may in fact prefer a high markup contract if it results in a larger pool of DR
contract holders i.e. a higher N . In Figure 2 we can see that with a 30%
markup contract the Aggregator would approximately prefer N=300. Now if N
increases to above approximately 375 the Aggregator and the TSO is better off
with a 50% markup contract. This however, lowers the surplus to the endusers.
If that causes difficulties for the Aggregator in raising the pool of DR contract
holders, the TSO may prefer to trade with an Aggregator owned by the endusers
as oppose to a privately held Aggregator, to align the incentives and make the
auction market drive down the price for DR. In case of a Coop, the TSO and
the Coop would prefer a 50% markup for N between approximately 375 and
500. For N above 500 the competition among the endusers drives down the
auction price and consequently the markup to a level such that the Aggregator
would be better of with the initial 30% markup contract.

As indicated above, it is likely that the TSO and the Aggregator may agree
on a high markup contract. In Figure 3 we present the results for the 30% and
the 50% markup contract for respectively the medium scenario and the high
scenario. The axes are the same but now we plot the aggregated surplus for the
different agents in the same plot.

The overall shape of the different curves in Figure 3 is the same in all of
the plots but the turning points differ. While Figure tells the same story as
in Figure 2 the changes that comes from increasing demand for DR is reflected
in the plots. Going from medium to high scenario moves the turning point
to the right towards a higher N (a larger pool of DR) for both a 30% and a
50% markup contract. The less intuitive results that the TSO may offer a high
markup contract is also reflected in Figure 3, and the Figure shows how this
result changes as the demand for DR increases. In high scenario the Aggregator
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Figure 3: The surplus generated to the players, divided into the two markup
contracts: The 30% and the 50% markup in respectively medium and high
scenario.
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and the TSO may both prefer a 50% markup contract if N increases to more
than approximately 500. Also the turning point for the Coop moves to the right
towards a higher N as the markup increases from 30 to 50%. Therefore, again
if the Aggregator has difficulties in raising the pool of DR contract holders, the
TSO may prefer to trade with an Aggregator owned by the endusers as oppose
to a privately held Aggregator.

7. Conclusion and discussion

The technological possibility to measure and map available DR and to acti-
vate it immediately using remotely controlled switches is the foundation for the
suggested DR system. As studies show, the nature of the incoming DR jobs and
endusers available to solve these, changes a lot from job to job. This requires the
market solution to be as flexible as the technological solution. The suggested
market solution makes it easy for the endusers to articulate their preferences in
advance and for the TSO to run and activate an auction instantaneously as a
job appears.

Although the economic simulation of the market solution, relies on limited
data it still capture the nature of the suggest auction solution and the impor-
tance of choosing a flexible surplus splitting contract between the Aggregator
and the TSO. While a fixed price contract is appealing in terms of communi-
cating prices, it distorts the DR system and leaves many DR jobs unsolved. On
the other hand, a lump sum contract maximized the welfare generated by the
DR system, however it requires an a priori negotiated splitting of the generated
surplus or a trustworthy method to measure the surplus. In either case, it relies
on private information about the TSO’s reservation price of DR and as such a
complex negotiation. Fortunately, the simulation shows that a simple markup
contract that allocates a percentage of the otherwise efficient auction prices to
the Aggregator is little distorting.

The simulation reveals an interesting nature of the DR system. While the
auction drives down the price for DR, the TSO prefers a large number of com-
peting endusers. The Aggregator on the other side receives a markup on top of
the decreasing market clearing price. This indicates that the TSO and the Ag-
gregator should be able to settle on a high markup contract in order to motivate
the Aggregator to sign more contracts with endusers. However, the resulting
lower prices to the endusers may cause tensions as the number of DR contracts
increases - both for the endusers that hold a contract and for those that enter a
contract. We conclude that this nature may count for a different owner structure
of the Aggregator where the endusers get residual income as in a cooperative.

The suggested DR system is well suited to activate available resources like
the many backup generators in an economy like Kenya with less developed
electricity markets. However, the suggested solution may be used equally well
in more developed electricity systems to help solving the challenges from e.g. an
increasing uptake of wind power. Buffers such as biogas or a cooling house may
function as DR like the backup generators in this paper and be made available
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for instant pricing and activation with the suggested rapid demand response
system.

8. Appendix A

Figure 4 below is a plot of system demand for the period covering 1st July
2011 to 30 th June 2012.
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Figure 4: System demand for the period covering 1st July 2011 to 30th June
2012. Source: Kenya Power.
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