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Abstract

League tables associated with various forms of service activities
from schools to hospitals illustrate the public need for ranking insti-
tutions by their productive performance. We present a new method
for ranking production units which is based on each units marginal
contribution to the technical efficiency of various “mergers” relative
to a common reference technology. The approach is radically differ-
ent from the usual one based on super-efficiency indexes in DEA. We
illustrate the mechanics of our method by a series of numerical exam-
ples and further demonstrate that our new index inherits all relevant
and desirable properties of the Farrell efficiency index upon which it
is constructed.
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1 Introduction

Data Envelopment Analysis (DEA) has proved to be one of the most pop-
ular methods for assessing the productive performance of a given sample of
production units, see e.g., Cooper et al., (2007) for a survey of models and
applications. Productive performance is here tantamount to efficiency and
the assessment is relative in the sense that each unit in the sample is assigned
an efficiency score (between 0 and 1) indicating the factor by which either its
input use or output production needs to be scaled in order to be as efficient
as the best performing peers of the sample. As such, efficient units all get a
DEA score of 1 while inefficient units all get DEA scores smaller than 1 (the
smaller the more inefficient).

Many empirical studies are concerned with ranking the involved produc-
tion units based on their associated efficiency scores (often broadly inter-
preted). In practice, league tables seem more popular than ever with on-line
ranking results on anything from kindergartens and hospitals to schools and
universities. The DEA literature offers a wide variety of such ranking meth-
ods as e.g., surveyed in Adler et al., (2002).

For inefficient units a complete ranking follows directly from their DEA
scores, but we cannot rank the efficient units according to their scores sim-
ply because these are all truncated at value 1. Consequently, several studies
have tried to develop indexes ranking these DEA efficient units. The seminal
paper by Andersen and Petersen (1993) submit that efficient units can be
ranked according to their influence on the spanning of the efficient frontier
of the estimated production possibility set (which in DEA consists of the
free disposal convex hull/cone of the data points). Specifically, they sug-
gest to use the radial Farrell efficiency index (as used in standard DEA; see
Farrell, 1957, Charnes et al., 1978) with respect to a given production unit
relative to the technology estimated by excluding this unit from the sam-
ple. If the unit is efficient, excluding it from the data set makes it infeasible
(super efficient) relative to the new (reduced) reference technology. Thus,
the index was dubbed a super efficiency index and it results in index values
weakly greater than one for efficient units while the index value is identical
to the standard DEA score for all the inefficient units. In this way it is pos-
sible to obtain a complete ranking of all the units in the sample based on
their efficiency/super-efficiency scores. Variations of this approach can, for
instance, be found in the (different) slack-based approaches of Tone (2002)
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and Bogetoft and Hougaard (2004).
Yet, the different super efficiency indexes all have drawbacks in relation

to obtaining a consistent ranking of the production units:

• Super efficiency indexes are not always well defined.1

• Using a super efficiency index the efficient units are in effect measured
relative to different frontiers (i.e., the frontier of the technology spanned
by the data set without the unit in question) while the inefficient units
are all measured relative to the same frontier spanned by the entire
data set. This inconsistency in the reference technology is making a
direct comparison of super efficiency scores, and thereby its induced
ranking, somewhat questionable.

• Super efficiency indexes measure the influence of given units on the
spanning of the frontier, but it is well recognized that not all frontier
units may be proper benchmarks.2 In a ranking context this has the
unfortunate consequence that frontier units are always ranked above
non-frontier units despite that fact that a non-frontier unit may be
very close to efficiency and optimal scale size while some frontier units
are associated with extreme optimal weights (multipliers) and very far
from optimal scale.

In the present paper we try to overcome these drawbacks by designing
an index for ranking production units, which refers to the same underlying
benchmark technology and is well defined for all units; efficient as well as
inefficient. Moreover, it indicates the actual influence on the efficiency of
the entire sample by measuring the marginal efficiency contribution of given
units. In this way we obtain a complete and consistent ranking of the entire
sample based on the units efficiency scores.

To be more precise, we assume that all mergers involving the production
units in the sample are possible. The production of a merger is simply found
by adding up the inputs and outputs of all the units involved in the merger.
Each unit can only enter into a merged unit once. This is basically a very

1See e.g., the discussion in Dula and Hickman (1997), Lovell and Rouse, (2003).
2Due to the weak notion of dominance some units appear as frontier units although

their supporting (dual) weights are unrealistic, see e.g., the discussion in Sexton et al.,
(1986).
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weak technological assumption since, for instance, we do not assume integer
constant returns to scale, where the same unit is replicated. The sample of
all original production units as well as all the possible mergers is dubbed
the extended sample, and a common reference technology, denoted T̃ , can be
estimated as the free disposal convex hull of this extended sample of data
points.

The idea is now to rank all the original production units according to their
marginal contribution to the efficiency of various mergers. The marginal effi-
ciency contribution of unit j to a merged unit S is computed as the difference
between the efficiency score of mergers S ∪ j and S relative to T̃ . That is,
the marginal efficiency contribution of j to S reveals how the efficiency score
of merger S changes by adding unit j to the merger.

In particular, we suggest to look at two indexes: The marginal contri-
butions index, IM , considers the marginal change in efficiency from merging
production unit j with the complement merger N \ j; The average contribu-
tions index, IA, acknowledges that the marginal efficiency change of adding
unit j differs with respect to all the various mergers in the extended sample
and suggests to look at the average of all these efficiency changes. In other
words, the average contribution index of unit j can be interpreted as the
average efficiency change arising if j was allowed to merge with any other
coalition of units.

The latter index has some resemblance to the Shapley value of a trans-
ferable utility game (Shapley, 1953) where each production unit is a “player”
and coalitional value is given by the Farrell efficiency score of the coalitions
aggregate production relative to the extended technology.

We show that both suggested contributions indexes are well defined for
all production units of the original sample and satisfy desirable properties
such as scale invariance, continuity and monotonicity.

The rest of the paper is organized as follow; Section 2 presents the model
and defines our common reference technology. Section 3 defines our two con-
tributions indexes. Section 4 illustrates the approach by numerical examples.
Section 5 looks at various desirable properties of the contribution indexes;
and finally Section 6 closes with some remarks on computational complexity
and possible extensions.
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2 The Model

Let x ∈ Rs
+ be a s-dimensional vector of inputs, let y ∈ Rt

+ be a t-dimensional
vector of outputs and let z = (x, y) ∈ Rs

+ × Rt
+ be a feasible production

plan, i.e., x can produce y. Let N = {1, . . . , n} be a (non-empty) finite set
of production units and let Z = {zj}j∈N be a set of feasible production plans
from these n units.

For j ∈ N let,

U(j) = {i ∈ N \ {j} | xi ≤ xj, yi ≥ yj} (1)

be the set of units dominating production unit j, i.e., units that use weakly
less inputs to produce weakly more outputs than j. Consequently, the set of
undominated production units in the sample Z, is given by

NE = {j ∈ N | U(j) = ∅} ⊆ N. (2)

For a given merger of production units S ⊆ N, S 6= ∅, let

z(S) = (x(S), y(S)) = (
∑
j∈S

xj,
∑
j∈S

yj) (3)

be the associated aggregate production plan of the merged unit S and let

Z̃ = {z(S)}S⊆N (4)

be the extended sample including aggregate production plans for all possi-
ble mergers of N (expect for ∅). There are 2n − 1 such possible mergers
disregarding the empty set.

Now, as a common reference technology we consider the production pos-
sibility set T̃ determined as the free disposal convex hull of the extended
sample Z̃, i.e.,

T̃ = {(x, y) |
∑
S⊆N

λSx(S) ≤ x,
∑
S⊆N

λSy(S) ≥ y,
∑
S⊆N

λS = 1, λS ≥ 0,∀S ⊆ N}

(5)
Note that using the technology T̃ does not imply that production plans

can be replicated, which is a much stronger assumption of integer constant
return to scale that cannot be directly inferred from observing the particular
production plans of the (original) sample Z.
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The free disposal convex hull of the extended sample, T̃ , can be compared
to the usual reference technologies of DEA associated with the original sam-
ple Z; assuming either variable or constant returns to scale (VRS or CRS)
respectively:

T V RS = {(x, y) |
∑
j∈N

λjxj ≤ x,
∑
j∈N

λjyj ≥ y,
∑
j∈N

λj = 1, λj ≥ 0,∀j ∈ N},

(6)
and

TCRS = {(x, y) |
∑
j∈N

λjxj ≤ x,
∑
j∈N

λjyj ≥ y, λj ≥ 0,∀j ∈ N} (7)

Observation 1: We note that T V RS ⊆ T̃ ⊆ TCRS.

Proof: Straightforward and therefore omitted.

In DEA, the efficiency of a specific production plan z relative to a tech-
nology set T , is typically measured using Farrell’s radial index of technical
efficiency (Farrell, 1957):

EF
in(z, T ) = min{θ | (θx, y) ∈ T} ∈ [0, 1]

in case of input-orientation, or

EF
out(z, T ) = min{θ | (x, y/θ) ∈ T} ∈ [0, 1]

in case of output-orientation.
Note that if EF (z, T ) = 1, production plan z is located on an external

facet of the convex polyhedral T . Ideally, efficiency score 1 should only be
assigned to fully efficient production plans (that is, undominated plans in T ),
but it is a well known fact that dominated (frontier) plans may get Farrell
score 1 as well; see, e.g., Russell (1985).

In particular, let

NMPSS = {j ∈ N | EF
in(zj, TCRS) = 1} ⊆ NE (8)
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denote the set of Most Productive Scale Size (MPSS) units, i.e., production
units in the original sample which are efficient under the assumption of con-
stant returns to scale, see e.g., Cooper et al (2007).

Observation 2: For a given (possibly merged) production plan z ∈ T̃ , we
note that

EF (z, T̃ ) ≥ EF (z, TCRS),

for both the input and output orientation. Moreover, in case EF (z, T V RS) is
well defined we have that

EF (z, T V RS) ≥ EF (z, T̃ )

for both the input and output orientation.

Proof: Straightforward consequence of Observation 1.

Now, consider the reduced technology T−j obtained by excluding unit j’s
production plan from the sample Z, defined as,

T−j = {(x, y) |
∑

i∈N\{j}
λixi ≤ x,

∑
i∈N\{j}

λiyi ≥ y, λi ≥ 0,∀i ∈ N \ {j}},

with or without the additional convexity requirement
∑

i∈N\{j} λ
i = 1.

Using for instance the Farrell index to measure (input oriented) super
efficiency of production unit j results in the following index,

Esuper
in (zj, T−j) = min{θ | (θx, y) ∈ T−j} (9)

If j is a frontier unit the index value will be ≥ 1 whereas Esuper
in (zj, T−j) =

EF
in(zj, T ) ∈ (0, 1) for non-frontier units. In particular, note that frontier

units which are either convex combinations of fully efficient plans in Z or
dominated by those will receive super efficiency score 1, while undominated
production plans receive super efficiency scores strictly larger than 1. In
this way the super efficiency index (9) induces a complete ranking of the
production units in N when (9) is well defined for all units.

There are at least two obvious problems with this approach. First, (9)
is not well defined for all units unless constant returns to scale is assumed.3

3Alternative super efficiency indexes may not even be well defined for all units under
constant returns to scale, see e.g., Bogetoft and Hougaard (2004).
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Second, while inefficient plans are all compared to the same frontier of the
technology, the super efficiency scores of the efficient units are measured
against different reference technologies (or different benchmarks so to speak).
Obviously this inconsistency makes the relevance of a direct comparison of
two super efficiency scores somewhat questionable. Super efficiency scores
have therefore also been suggested for alternative purposes, for example,
outlier detection, see e.g., Banker and Chang (2006).

Example 1: Consider three production units {1, 2, 3} using 1 input to pro-
duce 1 output with the sample given as Z = {z1, z2, z3} = {(1, 1), (2, 5), (3, 4)}.
Then, the extended sample becomes:

Z̃ = {z(1), z(2), z(3), z({1, 2}), z({1, 3}), z({2, 3}), z({1, 2, 3})} =

{(1, 1), (2, 5), (3, 4), (3, 6), (4, 5), (5, 9), (6, 10)}.

Using T̃ as reference technology we get the following input oriented Farrell
efficiency scores;

EF
in(zj, T̃ ) = 1 for j ∈ {1, 2, {2, 3}, {1, 2, 3}}, EF

in(z3, T̃ ) = 7/12, EF
in(z{1,2}, T̃ ) =

11/12 and EF
in(z{1,3}, T̃ ) = 1/2.

Thus, only unit 3 and mergers {1, 2} and {1, 3} are dominated, while the
production plans of all other units and mergers are (undominated) frontier
production plans in T̃ .

Using the super efficiency index (9) we get;

Esuper
in (z1, T V RS) = 2, Esuper

in (z2, T V RS) = inf,

and
Esuper

in (z3, T V RS) = EF
in(z3, T V RS) = 7/12.

Thus, we see that the super efficiency index is not always well defined (as in
the case of unit 2) and results in the following (incomplete) ranking of the
original units; 1 � 3.
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3 Ranking Production Plans

In the following we shall focus on input oriented efficiency4 and propose two
canonical indexes for consistent ranking of production units in N, in the sense
that efficiency is measured relative to a common reference technology, i.e.,
the technology (5) estimated on the basis of the extended sample Z̃.

For all possible mergers of production units S ⊆ N , we define the input
efficiency of the merged unit S relative to the technology estimated from the
extended sample T̃ , given by (5), as:

e(S) = EF
in(z(S), T̃ ) ∈ (0, 1] (10)

with e(∅) = 0 per definition. In other words, e(S) can be seen as the Far-
rell efficiency score of the merged unit S relative to (5), and can consequently
take values between 0 and 1.

Observation 3: We note that;

1. e(j) = 1 for all j ∈ NE.

2. e(N) = 1.

3. There may exist S ⊆ NMPSS for which e(S) < 1.

Proof: 1. and 2. are obvious; 3 is proved by Example 3 below. Q.E.D.

For a given production unit j ∈ N , define the marginal efficiency contri-
bution of j to the merger S ⊆ N \ {j} as,

mj(S) = e(S ∪ j)− e(S) ∈ (−1, 1] (11)

That is, mj(S) indicates how the efficiency of the merged unit S changes
by adding production unit j to S relative to the extended technology T̃ .
Note that mj(S) may take any value between -1 and 1, depending on j’s
influence on the efficiency of S. A negative marginal contribution can be
the result, for instance, of adding an inefficient unit to an efficient merger,
but even efficient units may have negative marginal impact on inefficient

4The approach can be used with respect to output oriented efficiency with the obvious
changes.
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mergers, see e.g., Example 1, where unit 1 is efficient, unit 3 is inefficient and
m1(3) = e(3 ∪ 1)− e(3) = 1/2− 7/12 = −1/12.5

3.1 Contribution Indexes

The marginal efficiency contribution can be seen as a proxy for unit j’s
contribution to (or influence on) the performance of the merger S ∪ j. Thus,
perhaps the most straightforward parallel to the traditional type of super
efficiency index is to rank a unit j ∈ N by its contribution to the efficiency
of N , i.e., the marginal efficiency contribution of adding unit j to the merger
of the complement N \ {j}.

Definition: We define the marginal efficiency contribution index, IM , of
production unit j ∈ N relative to the technology of the extended sample T̃ as,

IM(zj, T̃ ) = mj(N \ {j}). (12)

Since e(N) = 1 (because no merger can dominate the coalition with
maximum output) we get that IM(zj, T̃ ) ∈ [0, 1) for all j ∈ N . Moreover,
note that although this index is in some sense a parallel to the traditional
super efficiency index it cannot be interpreted as such. Indeed, the unit we
measure is not super efficient relative to the frontier of the technology T̃
based on the extended sample. Thus, we refer to this type of index as a
contribution index rather than a super efficiency index.

Since there are 2n−1 possible mergers of N \ {j} we may also look at the
average contribution of unit j ∈ N over all these mergers as an indication of
unit j’s average contribution to the efficiency in the sample.

Definition: We define the average efficiency contribution index, IA, of pro-
duction unit j ∈ N relative to the technology of the extended sample T̃ as,

IA(zj, T̃ ) =
1

2n−1

∑
S⊆N\{j}

mj(S). (13)

5In fact, we may even have that the marginal efficiency contribution of an MPSS unit
to a unit which it dominates is strictly negative.
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Note that we may have negative index values even for efficient units j ∈
NE using (13), unlike in the case of the marginal contributions index (12).

The efficiency contribution indexes (12) and (13) induce a ranking of the
production units j ∈ N such that j outranks j′ (written j � j′) if and only
if I(zj, T̃ ) > I(zj

′
, T̃ ) for any pair j, j′ ∈ N . Clearly, we obtain a complete

order with j ∼ j′ if and only if I(zj, T̃ ) = I(zj
′
, T̃ ).

Observation 4: We note that;

i. Unlike traditional super efficiency indexes, the efficiency contribution
indexes (12) and (13) are well defined for all production plans j ∈ N
under weaker assumptions than CRS.

ii. Unlike traditional super efficiency indexes, the efficiency contribution
indexes (12) and (13) use the same reference technology T̃ for all pro-
duction plans j ∈ N.

iii. Unlike traditional super efficiency indexes, the efficiency contribution
indexes (12) and (13) may rank inefficient units above efficient units
(albeit respecting dominance, see Proposition 7 below).

Proof: The first two statements follow directly from the definitions of
(12) and (13). For iii., see e.g., Example 2 below.

Since ranking by contribution indexes (12) and (13) is no longer directly
linked to the notion of the (weakly) efficient frontier of the reference tech-
nology we may, as observed in iii. above, rank inefficient units above frontier
units. Yet, it is important to note that both indexes (12) and (13) respects
dominance in the sense that if a unit j dominates unit i then j can never
be ranked below i, see Proposition 7. In other words, an inefficient unit can
only be ranked above a frontier unit if the two units are not ordered by the
dominance relation (i.e., j 6∈ U(i) and i 6∈ U(j)). As mentioned in the In-
troduction, we find this an advantage of the indexes (12) and (13) since not
all frontier units are supported by reasonable (optimal) weights and some
non-frontier units may in fact be very close to efficiency as well as optimal
scale size.

12



Remark: Note that (N, e) where e is given by (10) can be interpreted as a
cooperative game. For example, if we redefine (10) as follows;

ē(S) =

{
1 if EF

in(z(S), T̃ ) = 1
0 otherwise

(14)

for all S ⊆ N, with ē(∅) = 0 per definition, then (N, ē) is a simple game and
the associated average contribution index (13) is known as the (normalized)
Banzhaf index, see e.g., Peleg and Sudhölter (2003).

4 Examples

Example 1 continued: Recall the numerical Example 1. First, consider
efficient units NE = {1, 2}. Starting out with the marginal index IM we get;
IM(z1, T̃ ) = m1({2, 3}) = 1− 1 = 0 and IM(z2, T̃ ) = m2({1, 3}) = 1− 0.5 =
0.5. So clearly, unit 2 outranks unit 1, according to (12).

Next, considering the average index IA we get; IA(z1, T̃ ) = 1
4
(m1({2, 3})+

m1(2) + m1(3) + m1(∅)) = 1
4
(0 − 1/12 − 1/12 + 1) = 5/24 = 0.2083 and

IA(z2, T̃ ) = 1
4
(m2({1, 3})+m2(1)+m2(3)+m2(∅)) = 1

4
(1/2−1/12+1/3+1) =

7/16 = 0.4375. So also according to (13) we have that unit 2 outranks unit
1. Note that the standard super efficiency index of unit 1 is quite high
(Esuper

in (z1, T̃ ) = 2) so unit 1 has a considerable impact on the spanning of
the frontier of T̃ , but little impact on the efficiency of all the possible mergers.

Finally, for (the inefficient) unit 3 we get: IM(z3, T̃ ) = 0 and IA(z3, T̃ ) =
1
4
(0 − 0.5 + 0 + 1) = 1/8 = 0.125. Thus, IM induces the ranking 2 � 1 ∼ 3

while IA induces the ranking 2 � 1 � 3.

Example 2: Consider four production units {1, 2, 3, 4} using 1 input to
produce 1 output with the sample given as

Z = {z1, z2, z3, z4} = {(1.5, 1), (2.5, 4), (3, 5), (4, 4.5)}.

Then, extended sample becomes:

Z̃ = {z(1), z(2), z(3), z(4), z({1, 2}), z({1, 3}), z({1, 4}), z({2, 3}), z({2, 4}), z({3, 4}),

z({1, 2, 3}), z({1, 2, 4}), z({1, 3, 4}), z({2, 3, 4}), z({1, 2, 3, 4})} =
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{(1.5, 1), (2.5, 4), (3, 5), (4, 4.5), (4, 5), (4.5, 6), (5.5, 5.5), (5.5, 9),

(6.5, 8.5), (7, 9.5), (7, 10), (8, 9.5), (8.5, 10.5), (9.5, 13.5), (11, 14.5)}.

Using T̃ as reference technology we get that NE = {1, 2, 3} and the super
efficiency scores are;

Esuper
in (z1, T̃ ) = 5/3, Esuper

in (z2, T̃ ) = 21/20 and Esuper
in (z3, T̃ ) = inf . Finally,

EF
in(z4, T̃ ) = 11/16.

We now find index values IM and IA for the units 1,2,3 and 4:

IM(z1, T̃ ) = 0.0000
IM(z2, T̃ ) = 0.1961
IM(z3, T̃ ) = 0.2569
IM(z4, T̃ ) = 0.0873

IA(z1, T̃ ) = 0.1732
IA(z2, T̃ ) = 0.2988
IA(z3, T̃ ) = 0.3347
IA(z4, T̃ ) = 0.0410

We clearly see that whereas the traditional super efficiency index rank
unit 1 above unit 2, both our contribution indexes rank oppositely unit 2
above unit 1, which is more compelling in this case since unit 2 is MPSS (in
a 1-input-1-output model) and unit 1 is not.

Moreover, note that using the marginal contributions index IM we rank
the inefficient unit 4 above the efficient unit 1 simply because it has a slightly
positive marginal contribution to its complement unlike unit 1. Note though
that unit 4 is not dominated by unit 1 (cf., Proposition 7 below).

The average index IA induces perhaps a more reasonable ranking here,
namely; 3 � 2 � 1 � 4.

Example 3: Consider a sample consisting of four units {1, 2, 3, 4} each using
2 inputs to produce 1 output:

z1 = (x1, x2, y) = (1, 5, 1)
z2 = (x1, x2, y) = (5, 1, 1)
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z3 = (x1, x2, y) = (2, 2, 1)
z4 = (x1, x2, y) = (2.2, 2.2, 1)

Note that unit 4 is inefficient while units 1,2 and 3 are all MPSS units.
Clearly, units 1 and 2 are MPSS units because they are “specialized” in their
use of input 1 and 2 respectively.

Consequently, the traditional super efficiency approach favors units 1 and
2 that both get super efficiency score 2 while unit 3 only gets super efficiency
score 1.1. The induced ranking is therefore: 1 ∼ 2 � 3 � 4.

Since unit 1 and 2 are specialized units and unit 4 is rather close to
being efficient (EF

in(z4, T̃ ) = 0.91) it is far from obvious that unit 4 should
be ranked below units 1 and 2. Indeed the more compelling ranking:

3 � 4 � 1 ∼ 2

is the result of using both types of contribution indexes, IM and IA since

IM(z1, T̃ ) = 0.0000
IM(z2, T̃ ) = 0.0000
IM(z3, T̃ ) = 0.1220
IM(z4, T̃ ) = 0.1000

IA(z1, T̃ ) = 0.0711
IA(z2, T̃ ) = 0.0711
IA(z3, T̃ ) = 0.1880
IA(z4, T̃ ) = 0.1484

Furthermore, note that merging MPSS units does not guarantee efficiency
of the merged unit since e.g., e({1, 2}) = 0.7 and e({1, 2, 3}) = 0.9.

Example 4: see Adler et al., (2002). In order to compare the induced
ranking of the proposed contribution indexes to a wider range of existing
approaches, we now revisit the illustrative nursing home example from Sec-
tion 9 in Adler et al., (2002), which is itself an elaboration of an example
from Sexton et al., (1986). There are six units (nursing homes) each using
two inputs (staff hours per day, x1, and supplies per day, x2) to produce two
outputs (total Medicare plus Medicaid reimbursed patient days, y1, and total
private patient days, y2). The data set is given as:
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z1 = (x1, x2, y1, y2) = (150, 0.2, 14000, 3500)
z2 = (x1, x2, y1, y2) = (400, 0.7, 14000, 21000)
z3 = (x1, x2, y1, y2) = (320, 1.2, 42000, 10500)
z4 = (x1, x2, y1, y2) = (520, 2.0, 28000, 42000)
z5 = (x1, x2, y1, y2) = (350, 1.2, 19000, 25000)
z6 = (x1, x2, y1, y2) = (320, 0.7, 14000, 15000)

The induced ranking of various methods are provided in Table 1, below.

DEA methods Induced ranking
Cross-efficiency (Sexton et al., 1986) 1 � 2 � 4 � 5 � 3 � 6
Trad. super efficiency (Andersen and Petersen, 1993) 1 � 2 � 3 � 4 � 5 � 6
Statistical methods
CCA (Friedman and Sinuany-Stern, 1997) 1 � 2 � 3 � 4 � 5 � 6
DR/DEA (Sinuany-Stern and Friedman, 1998) 1 � 3 � 4 � 5 � 2 � 6
MCDM methods
Maximin eff. ratio (Troutt, 1995) 4 � 3 � 5 � 1 � 2 � 6
MOLP-minimax (Li and Reeves, 1999) 1 ∼ 4 � 5 � 2 � 3 � 6

Contribution indexes
IM 5 � 1 ∼ 2 ∼ 3 ∼ 4 ∼ 6
IA 1 � 2 � 4 � 5 � 3 � 6

Table 1: Rankings of various methods.

The rankings of the first six methods are discussed in Adler et al. (2002).
Here, we shall briefly note that IM produces a large indifference class con-
taining all but unit 5 whereas IA produces a strict ranking. Moreover, the
ranking induced by IA coincides with that of the Cross-efficiency method
(using an “aggressive” secondary objective6). The cross-efficiency method is
designed to address the issue of price- versus technical efficiency and thereby
it also aims to free the ranking from a direct connection to the (technical)
frontier.

6See Sexton et al. (1986).
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5 Some properties

We start out by showing that both contribution indexes are invariant to re-
scaling of inputs and outputs x 7→ αx and y 7→ βy for some strictly positive
scalar vectors α ∈ Rs

++ and β ∈ Rt
++.

Proposition 5: The contribution indexes IM and IA are scale invariant.

Proof: Scale invariance of IM and IA follows from scale invariance of
mj(S), which follows from scale invariance of the Farrell index, see, e.g.,
Hougaard and Keiding (1998). Q.E.D.

Further, small errors in the measurement of input quantities should only
result in small errors in the index value and not lead to dramatic changes
in the ranking. Hence, continuity7 of the ranking index is an important
property. Next, we can show,

Proposition 6: The contribution indexes IM and IA are continuous (for
sets of strictly positive production plans).

Proof: Both IM and IA are defined by the marginal contributions, mj(S),
which in turn are defined as the difference between two Farrell indexes.
Hence, the result follows from the fact that the Farrell index satisfies joint
continuity in input and technology (on the sub-domain of strictly positive
production plans). For details, see Russell (1990). Q.E.D.

Finally, we say that an index, I, respects dominance if z′ ∈ U(z) implies
that I(z′, T̃ ) ≥ I(z, T̃ ). That is, if a unit z′ dominates another unit z it can
never be ranked below z in the ranking induced by the index.

Proposition 7: The contribution indexes IM and IA respect dominance.

Proof: Consider two units i and j in N for which j ∈ U(i). First we
show that IM(zj, T̃ ) ≥ IM(zi, T̃ ). Indeed, we have e(N \ j) ≤ e(N \ i) since
z(N \ i) ∈ U(z(N \ j)) and the Farrell index satisfies weak monotonicity in
inputs, see e.g., Russell (1985).

7with respect to the topology T × = TE × TC where TE is the Euclidean topology and
TC is the topology on technologies induced by the topology of closed convergence.
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Second we show that mj(S) ≥ mi(S) for all S ⊆ N \ {i, j}. Indeed,
e(S ∪ j) ≥ e(S ∪ i) for all S ⊆ N \ {i, j} since z(S ∪ j) ∈ U(z(S ∪ i))
and the Farrell index satisfies weak monotonicity in inputs. Consequently,
IA(zj, T̃ ) ≥ IA(zi, T̃ ). Q.E.D.

From Proposition 5-7 we can conclude that, apart from the property of
“weak indication”,8 our contribution indexes inherit all the central properties
of the Farrell efficiency index. We specifically want to avoid “weak indica-
tion” since a Farrell super efficiency index can never rank an inefficient unit
above a frontier unit, unlike our indexes. As mentioned, from a ranking per-
spective, we find it questionable that an almost efficient unit close to being
MPSS should be deemed to be ranked below a highly specialized frontier
unit, far from optimal scale as is the consequence of “weak indication”.

6 Final Remarks

The DEA literature contains several approaches to rank production units
based on their efficiency with the so-called super efficiency index introduced
by Andersen and Petersen (1993) as the best known and most commonly used
method. Ranking based on super efficiency indexes has important drawbacks
though, and the present paper presents a new approach based on efficiency
contribution indexes, which are designed to overcome these drawbacks.

While the marginal contributions index IM is easy to compute even for
large data sets, the average contributions index, IA, is computationally heav-
ier. Indeed, as mentioned in the introduction, IA resembles the Shapley value
and it is well known that determining the Shapley value is computationally
complex, see e.g., Bilbao (2000). Unfortunately, IA inherits this complexity.

Yet, when making pairwise comparisons of the average index IA we do
not need to calculate the efficiency score for each of the 2n possible mergers
of the n units. Indeed, looking only at the difference between, say units i and
j, we need to find the efficiency score of 2n−1 possible mergers since we can
disregard those containing both i and j as well as those that contain neither i
nor j (of which there are 2·2n−2 = 2n−1). This reduces the number of relevant

8Stating that weak efficiency should be indicated by the index value - or specifically for
the standard Farrell index: EF (zj , T ) = 1 iff zj is a frontier unit, see e.g. Russell (1985).
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mergers to half the size. Thus, with current computer capabilities and DEA-
software without limits on the number of DMUs, most “normal-sized” data
sets do not present a serious obstacle for application.

A straightforward extension of our approach is to use the construction
of the contribution indexes with respect to a disaggregation of the radial
(Farrell) efficiency score into input (or output) specific efficiency scores. For
example, using the input specific scores behind the potential improvements
index of Bogetoft and Hougaard (1999),(2004), or any other non-radial index
such as the Russell or Zieschang index, see e.g., Christensen et al (1999).
In this way we would obtain input specific marginal efficiency contributions
for each production unit which enables a ranking of these units according to
separate inputs.
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