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Abstract

We analyze a two-attribute procurement auction that uses yardstick

competition to settle prices. The submitted sealed bids are replaced by

yardstick bids, computed by a linear weighting of the other participants’

bids. The auction simplifies the procurement process by reducing the prin-

cipal’s articulation of preferences to simply choosing the most preferred

offer as if it was a market with posted prices.

We show that there is only one type of Nash equilibria where some

agents may win the auction by submitting a zero price bid. Using a

simulation study we demonstrate that following this type of equilibrium

behavior often leads to winner’s curse. The simulations show that in

auctions with more than 12 participants the chance of facing winner’s

curse is around 95%.

Truthful reporting, on the other hand, does not constitute a Nash

equilibrium but it is ex post individually rational. Using a simulation

study we demonstrate that truthful bidding may indeed represent some

kind of focal point.

Keywords: Multi-attribute auction, yardstick competition, articulation

of preferences, simulation.
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1 Introduction

Efficient and flexible procurement systems are often crucial for the success of
any organization. As a buyer, organizations obviously want to minimize their
spending but attributes such as various types of qualities, delivery time etc.
may represent equally important objectives. Consequently, the development of
procurement systems faces an ongoing challenge in designing trading systems
that facilitate transparent competition on both price and other attributes as
well as ensuring sufficient flexibility for operational purposes while keeping the
transaction costs low.

A traditional negotiation approach allows full flexibility in this two-sided
matching of buyers and sellers, but it is typically ill-structured and opaque.
Multi-attribute auctions (scoring auctions), on the other hand, specify a priori

transparent rules for the procurement ”game” but obviously allow for less flexi-
bility. In either case the transaction costs are usually high, e.g., in a traditional
negotiation it is time consuming to ensure competition across many sellers and
in a traditional scoring auction it is time consuming to decide on a weighting of
price and other attributes a priori. In this paper we analyze a multi-attribute
auction that uses yardstick competition to facilitate competitive prices in a sim-
ple two-dimensional setting (a price and a quality measure) without any a priori
weighting of the two. The auction replaces the submitted price bids with yard-

stick prices and the buyer’s decision is simply to choose the desired service or
commodity as if it was a market with posted prices.

To be more precise we consider the following procurement mechanism: A
group of sellers (with private information about their production cost) each
submit a sealed price-quality bid, to be interpreted as the quality level they are
willing to deliver if compensated by at least their asking price. The sealed price-
bid is replaced by a yardstick price which is determined as a convex combination
of the two efficient ”neighbor” price-bids. The buyer then selects one of these
bids as a winning bid (without having to articulate his preferences, via a scoring
function, in advance). The winner commits to deliver and is compensated with
his associated yardstick price.

As such, this mechanism is a special case of what is called a Data Envelop-
ment Analysis (DEA) based auction in a recent paper by Bogetoft and Nielsen
(2008). Although they consider a mechanism with known scoring function, their
paper already noted that when the buyer’s preferences are unknown to the sell-
ers, their strategies become too complicated to analyze and that they are likely
to deviate from truth-telling by bidding above their true cost.

In the present paper we follow up on these conjectures. We show that there
does not exist Nash equilibria where all sellers submit a strictly positive price
bid. For instance, the seller with the highest quality level can always win the
auction by submitting a zero price bid and being reimbursed the computed
yardstick price. Yet, bidding zero may prove to be a fatal strategy since the
seller will often win the auction with a loss. Using a simulation study we show
that in auctions with 4 participants the chance of winning the auction with a
gain for the seller with the highest quality level is only 20% and this number
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drops quickly to 5% as the number of participants increases. In other words, it
appears that equilibrium behavior in the sense of zero price bidding is highly
risky for the sellers who easily end up facing winner’s curse.

On the other hand, we shall argue that even though truth-telling is not a
Nash equilibrium it is still very likely to be some kind of focal point when using
the mechanism in practice. The basic intuition is the following: Since improv-
ing a seller’s chances of winning the auction requires bidding quite substantially
above or below the true cost, the sellers run into two problems; bidding sub-
stantially above increases the risk of being excluded from the auction (in the
sense that the bid lies above the yardstick price); bidding substantially below
increases the risk of winning the auction with a loss since the compensation is
likely to be below actual true cost.

First, we consider the bidder who wins the auction if everyone tells the truth
and then we examine if this bidder will remain the winner even if we allow the
other bidders to misreport their true cost with up to 20% both above and below.
We show that allowing the other bidders to misreport rarely results in a new
winner that wins with a gain. It happens in less than 11-20% of all cases.
Combined with the fact that truth-telling guarantees non-negative pay-offs (is
ex post individually rational) our results point towards truth-telling as a focal
point in practice.

The outline of the paper is as follows: Section 2 relates the paper to the exist-
ing literature and Section 3 introduces the procurement setting and the notion
of yardstick prices. Section 4 defines the yardstick auction and discusses strate-
gic bidding by the sellers. Section 5 introduces the simulation framework and
the results are presented in Section 6 along with a discussion of our parameter
choices. Section 7 concludes.

2 Relation to the literature

Unlike auctions in general, the theoretical literature on multi-attribute auc-
tions is relatively sparse. A related line of literature, however, concerns the
widely used systems for e-procurement which have several similarities with
multi-attribute auctions, for example in how they automate negotiations (see
e.g. Burmeister et al. (2002) for an introduction to some of these systems).
There are several papers suggesting an incorporation of multi-attribute auc-
tions into the so-called Request for Quote (RFQ) systems, see e.g. Milgrom
(2000) and Bichler et al. (2003). RFQ systems use the Internet to improve
the searching and matching process between buyers and sellers in general. Lai
et al. (2004), Teich et al. (2004) and Teich et al. (2006) provide a survey as well
as an elaborate introduction to various multi-attribute negotiation and auction
systems.

The seminal paper on multi-attribute auctions by Che (1993) analyzes the
two most common scoring auctions: the first score and the second score auc-

tion.1 These two auctions have many similarities with the first and second price

1In a first score auction, the bidder with the highest score wins and has to meet the highest
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auctions. In fact, Che (1993) proves that the revenue equivalence theorem also
holds for the first and second score auctions2 and shows that the second score
auction is efficient and strategy proof.3

However, there is no particular reason to expect that in practice the buyer
(principal) knows a priori the scoring function. The determination of the scoring
function may be complicated for several reasons. For instance, when the prin-
cipal is a single person and the scoring represents the principal’s intra-personal
trade-offs; these complications are a central topic of a large literature on Mul-
tiple Criteria Decision Making (MCDM), see e.g. Tzeng and Huang (2011).
Furthermore, when the principal represents a group of persons (e.g., an orga-
nization), the construction of the scoring function may involve inter-personal
conflicts. The complication of this is reflected on the large literature on Social
Choice, see e.g. Arrow (1963), Moulin (1991). Empirical cases support the claim
that determination of a scoring function is a difficult matter. For instance, in the
conservation reserve program the USDA (United States Department of Agricul-
ture) rank the bids into a score. The actual determination of these scoring rules
has been widely discussed, see e.g. Babcock et al. (1996, 1997). The applied
scoring has also been an issue in the wholesale market for electricity in Califor-
nia, where the choice of an unsuitable scoring rule had severe consequences, see
Bushnell and Oren (1994) and Chao (2002).

In the literature on multi-attribute auctions there are only a few papers
relaxing the assumption of an a priori given value function for the principal.
Cripps and Ireland (1994) investigate the issues of setting quality thresholds
that are unknown to the bidders. Beil and Wein (2003) study the sequential
learning of the value function and bidders’ cost functions by a sequence of scoring
auctions with different scoring functions. However, Beil and Wein (2003) do
not directly address the risk of strategic bidding and basically presume truthful
revelation in the sequence of trial auctions.

In this paper we analyze a yardstick auction which basically replaces the
principal’s scoring with a yardstick competition: The principal simply chooses
among ”posted” yardstick prices. As a starting point for this research we use
the paper on DEA auctions by Bogetoft and Nielsen (2008). However, we relax
their assumption that the principal will announce a priori his scoring function4.

score. In a second score auction, the bidder with the highest score wins and has to meet the
second highest score.

2Using the revenue equivalence theorem as it is presented in Riley and Samuelson (1981).
3However, it is not given that the second score auction is the most preferred auction by

the principal. Bogetoft and Nielsen (2008) show that it is possible for the principal to extract
more informational rent while the auction remains efficient and strategy-proof.

4The idea of a yardstick auction can also be found in Aparicio et al. (2008). They suggest
an auction design for so-called combinatorial auctions based on the same type of yardstick
principle.
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3 The model

We consider a procurement setting along the lines of the model in Che (1993).
Assume that a risk neutral principal is seeking to procure a commodity (or a
service) from one of n risk neutral agents, i ∈ N = {1, ..., n}. The commodity
supplied by agent i is characterized by a one-dimensional quality level yi ∈ R+.
In addition to this, in order to focus on the adverse selection problems we further
assume that delivery of the promised qualities can be costlessly enforced (e.g.
by a harsh penalty for deviations).

Now, agents can produce different levels of quality, however their costs will
depend on their efficiencies. More formally, an agent producing the quality level
yi, has a cost ci(yi, ǫi) ∈ R+. The parameter ǫi represents this efficiency, and is
randomly drawn from the interval (ǫ, ǭ) which is agent i’s private information.
Meanwhile, all involved parties know that their costs belong to some unknown
common cost structure C(y) ⊆ R2

+.
Regarding this cost structure, we assume that

C(y) = min{x | y can be produced at cost x}

satisfies A1 and A2 below:

A1. C(.) is weakly increasing : y′ ≥ y ⇒ C(y′) ≥ C(y),
A2. C(.) is convex : C(γy + (1 − γ)y′) ≤ γC(y) + (1− γ)C(y′), ∀γ ∈ [0, 1].

We assume that the actual quality level yi is verifiable and fixed for each
agent i. Thus, possible strategic manipulations by the agents can only regard
the costs, and the signal from each agent i is simply a price-quality bid

(xi, yi) ∈ R2

+ (1)

with the interpretation that agent i will produce his quality level yi if he is paid
at least xi.

We assume throughout that the aim of the agent is to maximize (expected)
profit:

πi = xi − ci(yi, ǫi). (2)

The aim of the principal is to maximize (expected) net private value, i.e.,
the value generated by the good minus the compensation to the agent. That is,
the principal seeks to maximize,

V (yi, α)− xi (3)

where V (.) is a weakly increasing concave value function and α is randomly
drawn from an interval [α, α]. The assumption that the principal is unaware of
the specific value function is modeled by the parameter α.
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3.1 The Yardstick Prices

From the number of different cost models satisfying requirement A1 and A2, we
will select a model where the cost structure (illustrated in Figure 1) is estimated
using the smallest convex envelopment of the observed bids {(xj , yj)}j∈N , i.e.,

Ĉ(y) = inf{x ∈ R+ | x ≥
∑

j∈N

λjxj , y ≤
∑

j∈N

λjyj ,

∑

j∈N

λj = 1, λj ≥ 0, ∀j ∈ N}. (4)

For each agent i ∈ N we define a yardstick price x̄i using the estimated
cost structure (4) on the reduced bid-sample where agent i’s bid is excluded
(illustrated in Figure 2):

x̄i = inf{x ∈ R+ | x ≥
∑

j∈N\{i}

λjxj , yi ≤
∑

j∈N\{i}

λjyj ,

∑

j∈N\{i}

λj = 1, λj ≥ 0, ∀j ∈ N \ {i}}. (5)

For agent i, the above solution identifies a single point (x̄i, yi) on the frontier
estimated by the smallest convex envelopment of the submitted bids except for
agent i’s own bid.

Note that for some values of y, the associated yardstick price may be infinite
(e.g., bid d in the figure). In the yardstick auction presented below this is dealt
by asking the principal to announce an upper bound on the bids, i.e. the highest
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value of y and its associated reservation price x that the principal is willing to
accept. In this way every agent is guaranteed a yardstick price. Consequently
there is no need for a specification of a lower bound on quality.

Based on the model above the auction process runs as illustrated on the
timeline in Figure 3.

Auction announced

Bids submitted

x̄ computed

Principal selects the winner

The winner is paid

Figure 3: The auction process on a timeline

4 The Yardstick Auction

We analyze a procurement auction defined by a stepwise procedure. In Step 0,
the principal starts the auction by publicly announcing zP stating the maximum
value of the attribute in question yP and its reservation price xP for yP . zP

enters the auction as a submitted bid and thereby, xP addresses the problem
of non-existing yardstick price for the maximal value of y among the bidders.
Then, in Step 1, the bidders submit sealed bids. In Step 2, the yardstick prices
(x̄i) are computed (as illustrated in Figure 2). If x̄i ≥ xi the bidders original
price-bid is replaced by the computed yardstick price. In Step 3, the principal
reviews the yardstick bids and selects a single yardstick bid as the winner of the
auction. Step 4 finalizes the auction by compensating the selected winner with
his yardstick price. Formally,

The mechanism:

Step 0: The principal announces the procurement proposal and an upper bound
on the bids zP = (yP , xP ), where yP is the highest acceptable value of y
and xP is the highest acceptable price for yP .

Step 1: Each participant i ∈ N submits a single sealed bid zi = (xi, yi). Let
Z be the set of bids including zP , i.e., Z = {zi}i∈N ∪ zP .

Step 2: A yardstick price x̄i for all i ∈ N is computed using (5) and replaces
xi when xi ≤ x̄i. Let z̄i = (x̄i, yi) be the yardstick bid of agent i ∈ N and
let Z̄ be the set of such yardstick bids. Hereby Z̄ ⊆ Z.

Step 3: The set Z̄ is presented to the principal, who selects the winning bid
z̄i

∗

.
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Step 4: The winner i∗ is compensated by x̄i∗ and losers are not compensated.

The auction may be seen as a mechanism for settling posted prices on services
or commodities with linear weighting of price and other attributes. In fact in
comparing with the second score auction with linear weighting, the mechanism
settles the most pessimistic prices seen from the principal’s point of view. To
see this, note that the yardstick prices are equal to the highest possible second
score compensation with linear scoring.

4.1 Bidders’ Strategic Behavior

We now turn towards the bidders’ strategic behavior. As mentioned in the
introduction, we consider the situation where it is impossible (or very costly)
for the principal to articulate a scoring function a priori. For instance, in case
of a public institution that represents social (aggregate) preferences. However,
we assume that it is possible for the principal to make a unique selection in
Step 3 of the mechanism. This is consistent with the existence of some kind of
underlying concave scoring function for the principal (albeit unknown).

The fact that the principal cannot announce (and commit to) a scoring
function a priori complicates the analysis of the bidders strategic behavior.
Yet, it is clear that there is ample room for manipulation.

Observation 1: Consider a given agent i ∈ N . By increasing the price-bid xi

up to at most the yardstick price x̄i both neighbor yardstick bids increase and

thereby weakly increases i’s chance of winning the auction.

The argument is straightforward: Since changes in agent i’s price-bid xi have
no influence on i’s computed yardstick price x̄i (as this is determined excluding
agent i’s bid from the data set), it is free for agent i to increase his price-bid up
to his yardstick price. Bidding his yardstick price, given the bids of the other
agents, increases the yardstick-price of agent i’s neighbors and thereby weakly
increases his chance of being selected by the principal. Note that if agent i bids
above his yardstick price bid he will loose the auction for sure.

In a similar fashion we can show that if agent i decreases his price bid both
neighbor agents will get decreasing yardstick price bids which in turn weakly
decreases i’s chance of winning the auction. Thus, bidding below ones true
bid is disadvantageous unless the bid is so low that it in effect excludes the
neighbor agent from the auction (in the sense that it makes the neighbor agent
j’s yardstick bid go below j’s price bid). Such a situation is illustrated in Figure
4, where i decreases his bid zi to z′i and hereby exclude j from the auction.

We record this by the following observation.

Observation 2: There may be situations where an agent by bidding sufficiently

below its true cost can exclude a neighbor bid and thereby weakly increase the

chance of winning the auction.
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Figure 4: Excluding the neighbor yardstick bid

As indicated by Observation 2, there may exist perverse Nash equilibria
where some agent (say, the one with highest quality level) excludes the other
agents by a 0-price bid.

Example: Consider three agents with true quality-cost combinations; (y1, c1) =
(2, 1), (y2, c2) = (4, 2) and (y3, c3) = (7, 3). Assume that the principal decides
on zP = (8, 6). Now, let agents 1 and 2 submit their true bids z1 = (2, 1)
and z2 = (4, 2) while agent 3 submits the bid z3 = (7, 0). Clearly, the profile
z = (z1, z2, z3) is a Nash equilibrium since yardstick prices become x̄ = (0, 0, 5).
Therefore the principal is presented with the singleton set of yardstick bids
Z̄ = {(7, 5)} which he then chooses as winner independent of his preferences.
Hence, agent 3 is optimizing and agent 1 and 2 cannot do better given the
strategy of agent 3. Consequently, the strategy profile z is a Nash equilibrium.
△

The example above reveals the existence of Nash equilibria of the form where
the k′th agent (ordered according to quality level) submits a 0-price bid while
agents with higher quality levels submit the truth and agents with lower quality
levels can submit any bid. What determines the number k is whether the k’th
agent has a yardstick price, given a 0-price bid of agent k − 1, which is above
k’s true cost such that he does not win with a loss: by bidding the truth, agents
k + 1 to n ensure that they do not win with a loss. Agents 1 to k − 1 are in
effect excluded from the auction by agent k′s 0-price bid.

In fact, such “perverse” equilibria are the only type of Nash equilibria in
the model. Indeed, we can show that there does not exist equilibria where all
bidders submit a positive price-bid. We record this as Observation 3 below.

Observation 3: No Nash equilibrium exists for which xi > 0 for all i ∈ N .
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Sketch of proof: By contradiction assume that an equilibrium exists for
which xi > 0 for all i ∈ N . By Observation 1, no agent will bid below his
yardstick price. Neither can bids be above the yardstick since this would lead to
exclusion and thereby zero pay-off. Thus, all bids must lie on a horizontal line
where xi = xP for all i ∈ N . In this case the agent i∗ with the highest quality
level yi

∗

can win the auction by bidding (yi
∗

, 0) contradicting that the strategy
profile is a Nash equilibrium. Q.E.D.

In practice, 0-price bidding is a risky strategy though. Often it will lead
to winner’s curse as we demonstrate by a simulation study in the next section.
In fact, we also demonstrate that truthful bidding (which does not constitute
a Nash equilibrium) may well turn out to be a focal point in practice because,
among other things, it is ex post individually rational.

5 Simulation Framework

Based on the Yardstick Auction described in the previous section, we now in-
troduce the simulation framework that allows us to analyze two scenarios: a)
0-price Nash equilibrium behavior of the bidder with highest quality level, and
b) truth-telling as an alternative focal point.

In the proposed framework the principal’s value function is given by V (y, α) =
αy, with α independently drawn from the uniform distribution U(6, 16) and y

the agents’ reported quality levels, independently drawn from the uniform dis-
tribution U(1, 10). Most importantly, drawing parameter α from a random
distribution, models the principal’s uncertainty of its preference function before
receiving the agents’ bids.

Furthermore, the agents’ costs are determined by the common underlying
cost function x(y) = y2 and the individual inefficiencies in production modeled
by the parameter ǫi ∼ U(1, 1.5) resulting in individual costs xi(y) = ǫiy2.

We simulate the mechanism 103 times for 4, 8, 12, 16, 20, 24, 28, 32 partici-
pating agents. In every iteration we simulate for each one of the agents a set
of bids (yi, xi) by randomly drawing yi and ǫi and the principal’s preference
by randomly drawing α. For every iteration there is also an upper bound bid
zP = (yP , xP ) with yP being equal to the upper bound of the distribution of
the reported quality (hence yP = 10) and xP ∼ U(90, 110). We compute the
yardstick bids and corresponding scores, identify the winner of the auction and
calculate the utility that the winner of the auction derives after producing the
promised quality. We then introduce deviation from truth-telling for all agents
but one (labeled as the ‘selected agent’) by multiplying the agents’ costs with
a parameter randomly drawn from a uniform distribution centered in 1. For a
deviation up to X% above and below the true cost we use U(1−X, 1+X). For
example, a deviation up to 20% above and below the true cost we use U(0.8, 1.2).

Identifying the ‘selected agent’ depends on the scenario. Specifically, for the
0-price Nash equilibrium case the selected agent is the agent with the highest
reported quality, while in the truth-telling scenario we focus our analysis on
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the agent identified as the ‘winner’ of the auction in a trial run where everyone
reports the truth.

Assuming that all agents, except for the initial winner, are capable of under
or over reporting their costs we proceed to compute their yardstick bids based
on these ’misreported’ bids, and examine whether the selected agent in each
scenario remains a winner despite the misreporting of the others.

Technically, all simulations are done in R and all DEA programs are solved
using the ”Benchmarking” package for R, cf. Bogetoft and Otto (2011) and
Bogetoft and Otto (2012). Our parameter choices will be further discussed in
section 6.1 below.

6 Simulation Results

Having described the simulation’s input parameters and objectives we now
present our numerical findings grouped into two sets of simulations. First, we
present the simulation results for the 0-price Nash equilibrium behavior of the
bidder with the highest quality level and then, we present the simulation results
of truth-telling as focal point.

The simulation results for the 0-price equilibrium scenario are reported in
Figure 5. In Figure 5 (a) we show that as the number of participating bid-
ders increases the percentage of auctions in which the bidder with the highest
reported quality, say i∗, wins the auction with a gain (πi∗ ≥ 0) by bidding
sufficiently below his true cost, drops significantly. The misreporting, X , of
all other agents is equal to 10% and 20% (cu=0.1 and 0.2) respectively5. In
particular, we see that for more than 12 bidders only approximately 5 % of all
auctions are successful for i∗. Moreover, as demonstrated in Figure 5 (b) the
required misreporting of i∗ approaches 100% (i.e. 0-price) proving that, in fact,
aggressive bidding is needed to win the auction by ‘price-dumping’.

With the 0-price Nash equilibrium behavior being both highly risky for the
manipulating bidder and potentially unrealistic in practice due to the close to
0-price bids, we now turn to the simulation results concerning the truth-telling
strategy. By definition, a bidder can not win the auction with a loss by telling
the truth, however, others misreporting may cause the otherwise winning bidder
to lose the auction. The results from this simulation is reported in Figure 6.
We fix the misreporting parameter X again to be between 0.1 and 0.2 and vary
the number of participating agents. In Figure 6 (a) we show the percentage of
auctions in which the initial winner remains the winner despite the fact that
all other agents misreport. In Figure 6 (b) we focus on the cases where the
other agents misreporting results in a new winner (henceforth referred as “new-
winner”) and report the percentage of these cases where the new-winner wins
with a loss.

5Note that if the other bidders were allowed a higher degree of misreporting our results
will be even stronger in the sense that there will be even fewer cases where the auction is won
with a gain.
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Figure 5: 0-price Nash equilibrium behavior: (a) the percentage of auctions won
with a gain; (b) downward deviation in percentage of actual cost.
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Figure 6: Truth telling as a focal point for the initial winner of the auction: (a)
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percentage of new winners facing winner’s curse.
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The simulation indicates that for a reasonable degree of misreporting (up to
20%) the initial winner remains the winner in the vast majority of the simulation
iterations despite the fact that all other agents misreport. Overall we consider
this a positive result, especially given that both simulations also suggest that
for the majority of the cases where misreporting results in a new winner, this
new-winner faces a loss in utility. In fact in Figure 6 (b) we demonstrate that as
the number of bidders increases, so does the percentage of new-winners facing
losses in their utilities.

To sum up, simulations show that it requires a significant deviation to win,
while that significant deviation involves an increasing chance of winner’s curse,
i.e., that the winner wins with a loss. Combining the results from both scenarios
shows that irrespective of the number of competing bidders as well as the degree
of misreporting, 80 to 89% of all auctions will either have the same winner (the
initial winner) or a new winner who wins with a loss.

Consequently, we conclude that bidding truthful may very well be a focal
point in practice. It is ex post individually rational and the optimal strategy in
the vast majority of cases.

6.1 Discussion of the simulation assumptions

In the simulation framework we make use of the uniform distribution in connec-
tion with various parameter choices. We shall here briefly discuss these choices
and how they will influence the result of our simulation study.

Concerning the principal (or buyer) we have made two assumptions:

i) α ∈ U [6, 16]. The uniform distribution’s limits for the parameter α have
been set to 6 and 16 in order to represent a suitably broad range of po-
tential preferences of the principal. Since we assume to have a common
underlying cost function of the form x(Y ) = y2, then truth-telling and no
inefficiency in production (i.e. ǫi = 1 ∀ i) for all bidders, would imply that
the principal picks a quality-price bid where the quality level is between
3 and 8 (recall that y ∈ U [1, 10]). Obviously more extreme quality levels
can be selected when we allow for individual inefficiencies in production.
Narrowing or spreading the interval [6, 16] will have a negligible influence
on our simulation results as confirmed by further simulations.

ii) xP ∈ U [90, 110]. The limits of the uniform distribution of xP is determined
as a plus-minus 10% deviation from the true underlying cost of 100. This
reflects the principal’s uncertainty when choosing zP in the initial step of
the mechanism. Unlike the choice of α the choice of xP has a direct impact
on the simulation results in the sense that it influences the yardstick price
of the agent with the highest quality level. As xP increases so does the
yardstick price of the bidder with the highest quality level. Therefore, the
higher the value of xP the more it favors the 0-price bidding of the bidder
with the highest quality level. By randomly drawing a level which is in a
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10% range above and below true costs for y = 10 (maximum quality level)
we therefore try to neutralize this effect.

Concerning the bidders (or sellers) we have made one assumption:

i) ǫi ∈ U [1, 1.5]. That production units may have up to 50% technical ineffi-
ciency is supported by several empirical productivity studies (see e.g.Bogetoft
and Otto (2011)). The effect on our simulation study from changes in this
parameter choice is at least two-fold. On the one hand, higher inefficiency
tend to exclude more bidders from the auction. On the other hand, in-
creasing inefficiency also tends to increase yardstick prices. Consequently,
the probability of winning with a gain by playing the 0-price strategy
weakly increases with increased inefficiency level. Looking at truth-telling
as a focal point the effect of changing the inefficiency level is far less obvi-
ous though. Further simulations tend to show that the effect is marginal.

7 Conclusion

We have analyzed a two-attribute procurement auction that uses yardstick com-
petition to simplify the procurement process. The yardstick auction reduces the
cost of articulating preferences to a mere problem of picking a favored alterna-
tive, as with posted prices.

Although the individual bidders cannot influence the compensation if win-
ning, the auction is not strategy-proof. We showed that there only exist Nash
equilibria of the type involving extreme 0-price bidding. Clearly, 0-price bid-
ding behavior is highly risky as illustrated by our simulations which showed that
with sufficient competition among bidders the chance of facing winner’s curse is
around 95%. Truthful bidding on the other hand is ex post individually rational
and as demonstrated by our simulations it is very likely that the bidder that
wins if all bidders report the truth, remains the winner even if all other bidders
are allowed to deviate substantially from the truth. Again it was shown that if
deviation from the truth results in a new winner he is very likely to face winner’s
curse. In practice truthful reporting therefore seems to be an alternative focal
point of the yardstick mechanism.

Assuming that the bidders report truthfully in practice it is possible to mea-
sure the cost of not investing in articulating a traditional ”scoring function” for
the principal. Additional simulations indicate that in the majority of cases the
yardstick auction selects that same winner as a traditional second score auction
with a priori announced scoring function. This confirms that the yardstick auc-
tion is not an efficient auction, however the simulations also indicate that the
actual drop in social value from not having a scoring function decreases signif-
icantly. In fact, as the number of participants reaches approximately 10 there
is only a marginal drop in social value from not having to articulate a scoring
function.

Further adjustments of the auction set-up may strengthen the conjecture
that truthful reporting is a focal point. For example we may try to limit bidding
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above true cost by using the principals choice to elicit potential scoring functions
and use these along the lines of a traditional scoring auction. We leave the details
for future research.
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